enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inner product space - Wikipedia

    en.wikipedia.org/wiki/Inner_product_space

    In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space [1] [2]) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in , .

  3. Polarization identity - Wikipedia

    en.wikipedia.org/wiki/Polarization_identity

    In linear algebra, a branch of mathematics, the polarization identity is any one of a family of formulas that express the inner product of two vectors in terms of the norm of a normed vector space. If a norm arises from an inner product then the polarization identity can be used to express this inner product entirely in terms of the norm. The ...

  4. Geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Geometric_algebra

    The regressive product, like the exterior product, is associative. [28] The inner product on vectors can also be generalized, but in more than one non-equivalent way. The paper gives a full treatment of several different inner products developed for geometric algebras and their interrelationships, and the notation is taken from there. Many ...

  5. Linear algebra - Wikipedia

    en.wikipedia.org/wiki/Linear_algebra

    Besides these basic concepts, linear algebra also studies vector spaces with additional structure, such as an inner product. The inner product is an example of a bilinear form, and it gives the vector space a geometric structure by allowing for the definition of length and angles. Formally, an inner product is a map

  6. Interior product - Wikipedia

    en.wikipedia.org/wiki/Interior_product

    In mathematics, the interior product (also known as interior derivative, interior multiplication, inner multiplication, inner derivative, insertion operator, or inner derivation) is a degree −1 (anti)derivation on the exterior algebra of differential forms on a smooth manifold.

  7. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    The requirement that is a positive-definite inner product then says exactly that this matrix-valued function is a symmetric positive-definite matrix at . In terms of the tensor algebra , the Riemannian metric can be written in terms of the dual basis { d x 1 , … , d x n } {\displaystyle \{dx^{1},\ldots ,dx^{n}\}} of the cotangent bundle as

  8. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    A real inner product space is defined in the same way, except that H is a real vector space and the inner product takes real values. Such an inner product will be a bilinear map and ( H , H , ⋅ , ⋅ ) {\displaystyle (H,H,\langle \cdot ,\cdot \rangle )} will form a dual system .

  9. First fundamental form - Wikipedia

    en.wikipedia.org/wiki/First_fundamental_form

    In differential geometry, the first fundamental form is the inner product on the tangent space of a surface in three-dimensional Euclidean space which is induced canonically from the dot product of R 3. It permits the calculation of curvature and metric properties of a surface such as length and area in a manner consistent with the ambient space.