Search results
Results from the WOW.Com Content Network
In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space [1] [2]) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in , .
In linear algebra, a branch of mathematics, the polarization identity is any one of a family of formulas that express the inner product of two vectors in terms of the norm of a normed vector space. If a norm arises from an inner product then the polarization identity can be used to express this inner product entirely in terms of the norm. The ...
The regressive product, like the exterior product, is associative. [28] The inner product on vectors can also be generalized, but in more than one non-equivalent way. The paper gives a full treatment of several different inner products developed for geometric algebras and their interrelationships, and the notation is taken from there. Many ...
Besides these basic concepts, linear algebra also studies vector spaces with additional structure, such as an inner product. The inner product is an example of a bilinear form, and it gives the vector space a geometric structure by allowing for the definition of length and angles. Formally, an inner product is a map
In mathematics, the interior product (also known as interior derivative, interior multiplication, inner multiplication, inner derivative, insertion operator, or inner derivation) is a degree −1 (anti)derivation on the exterior algebra of differential forms on a smooth manifold.
The requirement that is a positive-definite inner product then says exactly that this matrix-valued function is a symmetric positive-definite matrix at . In terms of the tensor algebra , the Riemannian metric can be written in terms of the dual basis { d x 1 , … , d x n } {\displaystyle \{dx^{1},\ldots ,dx^{n}\}} of the cotangent bundle as
A real inner product space is defined in the same way, except that H is a real vector space and the inner product takes real values. Such an inner product will be a bilinear map and ( H , H , ⋅ , ⋅ ) {\displaystyle (H,H,\langle \cdot ,\cdot \rangle )} will form a dual system .
In differential geometry, the first fundamental form is the inner product on the tangent space of a surface in three-dimensional Euclidean space which is induced canonically from the dot product of R 3. It permits the calculation of curvature and metric properties of a surface such as length and area in a manner consistent with the ambient space.