Search results
Results from the WOW.Com Content Network
A scale factor is usually a decimal which scales, or multiplies, some quantity. In the equation y = Cx, C is the scale factor for x. C is also the coefficient of x, and may be called the constant of proportionality of y to x. For example, doubling distances corresponds to a scale factor of two for distance, while cutting a cake in half results ...
The scale factors for the elliptic coordinates (,) are equal to = = + = . Using the double argument identities for hyperbolic functions and trigonometric functions, the scale factors can be equivalently expressed as
The six independent scalar products g ij =h i.h j of the natural basis vectors generalize the three scale factors defined above for orthogonal coordinates. The nine g ij are the components of the metric tensor , which has only three non zero components in orthogonal coordinates: g 11 = h 1 h 1 , g 22 = h 2 h 2 , g 33 = h 3 h 3 .
The AOL.com video experience serves up the best video content from AOL and around the web, curating informative and entertaining snackable videos.
Let (x, y, z) be the standard Cartesian coordinates, and (ρ, θ, φ) the spherical coordinates, with θ the angle measured away from the +Z axis (as , see conventions in spherical coordinates). As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range ...
In each zone the scale factor of the central meridian reduces the diameter of the transverse cylinder to produce a secant projection with two standard lines, or lines of true scale, about 180 km on each side of, and about parallel to, the central meridian (Arc cos 0.9996 = 1.62° at the Equator). The scale is less than 1 inside the standard ...
A conformal map acting on a rectangular grid. Note that the orthogonality of the curved grid is retained. While vector operations and physical laws are normally easiest to derive in Cartesian coordinates, non-Cartesian orthogonal coordinates are often used instead for the solution of various problems, especially boundary value problems, such as those arising in field theories of quantum ...
Paraboloidal coordinates are three-dimensional orthogonal coordinates (,,) that generalize two-dimensional parabolic coordinates. They possess elliptic paraboloids as one-coordinate surfaces. As such, they should be distinguished from parabolic cylindrical coordinates and parabolic rotational coordinates , both of which are also generalizations ...