enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sliding filament theory - Wikipedia

    en.wikipedia.org/wiki/Sliding_filament_theory

    Cross-bridge theory states that actin and myosin form a protein complex (classically called actomyosin) by attachment of myosin head on the actin filament, thereby forming a sort of cross-bridge between the two filaments. The sliding filament theory is a widely accepted explanation of the mechanism that underlies muscle contraction.

  3. Myosin - Wikipedia

    en.wikipedia.org/wiki/Myosin

    Myosin VI is an unconventional myosin motor, which is primarily processive as a dimer, but also acts as a nonprocessive monomer. It walks along actin filaments, travelling towards the pointed end (- end) of the filaments. [44] Myosin VI is thought to transport endocytic vesicles into the cell. [45]

  4. Sarcomere - Wikipedia

    en.wikipedia.org/wiki/Sarcomere

    Myosin filaments, the thick filaments, are bipolar and extend throughout the A-band. They are cross-linked at the centre by the M-band. The giant protein titin (connectin) extends from the Z-line of the sarcomere, where it binds to the thick filament (myosin) system, to the M-band, where it is thought to interact with the thick filaments. Titin ...

  5. Myofilament - Wikipedia

    en.wikipedia.org/wiki/Myofilament

    The protein complex composed of actin and myosin, contractile proteins, is sometimes referred to as actomyosin.In striated skeletal and cardiac muscle, the actin and myosin filaments each have a specific and constant length in the order of a few micrometers, far less than the length of the elongated muscle cell (up to several centimeters in some skeletal muscle cells). [5]

  6. File:The Sliding Filament Theory Visual Model.pdf - Wikipedia

    en.wikipedia.org/wiki/File:The_Sliding_Filament...

    Then the myosin performs whats known as a working or power stroke to slide the actin filament. During this step ADP and Pi are released. In step 3 a new ATP binds to the myosin head and the cross bridge between the myosin and actin detach.

  7. Isotropic bands - Wikipedia

    en.wikipedia.org/wiki/Isotropic_bands

    Isotropic bands contain only actin-containing thin filaments. [1] The thin filaments are placed between 2 myosin filaments and contain only the actin filaments of neighboring sarcomeres. Bisecting the I band and serving as an anchoring point for the two adjacent actin filaments is the Z disc.

  8. Myosin head - Wikipedia

    en.wikipedia.org/wiki/Myosin_head

    The myosin head is the part of the thick myofilament made up of myosin that acts in muscle contraction, by sliding over thin myofilaments of actin.Myosin is the major component of the thick filaments and most myosin molecules are composed of a head, neck, and tail domain; the myosin head binds to thin filamentous actin, and uses ATP hydrolysis to generate force and "walk" along the thin filament.

  9. Protein filament - Wikipedia

    en.wikipedia.org/wiki/Protein_filament

    In biology, a protein filament is a long chain of protein monomers, such as those found in hair, muscle, or in flagella. [1] Protein filaments form together to make the cytoskeleton of the cell. They are often bundled together to provide support, strength, and rigidity to the cell.