Search results
Results from the WOW.Com Content Network
Glutamate is a very major constituent of a wide variety of proteins; consequently it is one of the most abundant amino acids in the human body. [1] Glutamate is formally classified as a non-essential amino acid, because it can be synthesized (in sufficient quantities for health) from α-ketoglutaric acid, which is produced as part of the citric acid cycle by a series of reactions whose ...
Glutamate is the most prominent neurotransmitter in the body, and is the main excitatory neurotransmitter, being present in over 50% of nervous tissue. [2] [3] Glutamate was initially discovered to be a neurotransmitter in insect studies in the early 1960s.
Glutamic acid (symbol Glu or E; [4] the anionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins.It is a non-essential nutrient for humans, meaning that the human body can synthesize enough for its use.
The allosteric site, which modulates receptor function when bound to a ligand, is not occupied. NMDARs require the binding of two molecules of glutamate or aspartate and two of glycine [ 1 ] [ 2 ] The N -methyl- D -aspartate receptor (also known as the NMDA receptor or NMDAR ), is a glutamate receptor and predominantly Ca 2+ ion channel found ...
Neurotransmitters are essential to the function of complex neural systems. The exact number of unique neurotransmitters in humans is unknown, but more than 100 have been identified. [3] Common neurotransmitters include glutamate, GABA, acetylcholine, glycine, dopamine and norepinephrine.
Glutamate transporters are a family of neurotransmitter transporter proteins that move glutamate – the principal excitatory neurotransmitter – across a membrane.The family of glutamate transporters is composed of two primary subclasses: the excitatory amino acid transporter (EAAT) family and vesicular glutamate transporter (VGLUT) family.
In biochemistry, the glutamate–glutamine cycle is a cyclic metabolic pathway which maintains an adequate supply of the neurotransmitter glutamate in the central nervous system. [1] Neurons are unable to synthesize either the excitatory neurotransmitter glutamate , or the inhibitory GABA from glucose .
Glutamate decarboxylase or glutamic acid decarboxylase (GAD) is an enzyme that catalyzes the decarboxylation of glutamate to gamma-aminobutyric acid (GABA) and carbon dioxide (CO 2). GAD uses pyridoxal-phosphate (PLP) as a cofactor .