enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mass transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Mass_transfer_coefficient

    Mass transfer coefficients can be estimated from many different theoretical equations, correlations, and analogies that are functions of material properties, intensive properties and flow regime (laminar or turbulent flow). Selection of the most applicable model is dependent on the materials and the system, or environment, being studied.

  3. Fick's laws of diffusion - Wikipedia

    en.wikipedia.org/wiki/Fick's_laws_of_diffusion

    One more general framework is the Maxwell–Stefan diffusion equations [9] of multi-component mass transfer, from which Fick's law can be obtained as a limiting case, when the mixture is extremely dilute and every chemical species is interacting only with the bulk mixture and not with other species. To account for the presence of multiple ...

  4. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    The analogy is useful for both using heat and mass transport to predict one another, or for understanding systems which experience simultaneous heat and mass transfer. For example, predicting heat transfer coefficients around turbine blades is challenging and is often done through measuring evaporating of a volatile compound and using the ...

  5. Mass transfer - Wikipedia

    en.wikipedia.org/wiki/Mass_transfer

    Mass transfer is the net movement of mass from one location (usually meaning stream, phase, fraction, or component) to another. Mass transfer occurs in many processes, such as absorption, evaporation, drying, precipitation, membrane filtration, and distillation. Mass transfer is used by different scientific disciplines for different processes ...

  6. Chilton and Colburn J-factor analogy - Wikipedia

    en.wikipedia.org/wiki/Chilton_and_Colburn_J...

    This equation permits the prediction of an unknown transfer coefficient when one of the other coefficients is known. The analogy is valid for fully developed turbulent flow in conduits with Re > 10000, 0.7 < Pr < 160, and tubes where L/d > 60 (the same constraints as the Sieder–Tate correlation). The wider range of data can be correlated by ...

  7. NTU method - Wikipedia

    en.wikipedia.org/wiki/NTU_Method

    Here, is the overall mass transfer coefficient, which could be determined by empirical correlations, is the surface area for mass transfer (particularly relevant in membrane-based separations), and ˙ is the mass flowrate of bulk fluid (e.g., mass flowrate of air in an application where water vapor is being separated from the air mixture). At ...

  8. Sherwood number - Wikipedia

    en.wikipedia.org/wiki/Sherwood_number

    D is mass diffusivity (m 2 s −1) h is the convective mass transfer film coefficient (m s −1) Using dimensional analysis, it can also be further defined as a function of the Reynolds and Schmidt numbers: = (,) For example, for a single sphere it can be expressed as [citation needed]:

  9. Biot number - Wikipedia

    en.wikipedia.org/wiki/Biot_number

    The value of the Biot number can indicate the applicability (or inapplicability) of certain methods of solving transient heat transfer problems. For example, a Biot number smaller than about 0.1 implies that heat conduction inside the body offers much lower thermal resistance than the heat convection at the surface, so that temperature ...