Search results
Results from the WOW.Com Content Network
Atmospheric refraction of the light from a star is zero in the zenith, less than 1′ (one arc-minute) at 45° apparent altitude, and still only 5.3′ at 10° altitude; it quickly increases as altitude decreases, reaching 9.9′ at 5° altitude, 18.4′ at 2° altitude, and 35.4′ at the horizon; [4] all values are for 10 °C and 1013.25 hPa ...
Atmospheric optics is "the study of the optical characteristics of the atmosphere or products of atmospheric processes .... [including] temporal and spatial resolutions beyond those discernible with the naked eye". [1] Meteorological optics is "that part of atmospheric optics concerned with the study of patterns observable with the naked eye". [2]
A Terrestrial Atmospheric Lens is a theoretical method of using the Earth as a large lens with a physical effect called atmospheric refraction. [ 1 ] The sun's image appears about a half degree above its real position during sunset due to Earth's atmospheric refraction.
Atmospheric optical phenomena include: Afterglow; Airglow; Alexander's band, the dark region between the two bows of a double rainbow. Alpenglow; Anthelion; Anticrepuscular rays; Aurora (northern and southern lights, aurora borealis and aurora australis) Belt of Venus; Brocken Spectre; Circumhorizontal arc; Circumzenithal arc; Cloud iridescence ...
Looming of the Canadian coast as seen from Rochester, New York, on April 16, 1871. Looming is the most noticeable and most often observed of these refraction phenomena. It is an abnormally large refraction of the object that increases the apparent elevation of the distant objects and sometimes allows an observer to see objects that are located below the horizon under normal conditions.
Atmospheric refraction causes light entering the atmosphere to follow an approximately circular path that is slightly longer than the geometric path. Air mass must take into account the longer path . Additionally, refraction causes a celestial body to appear higher above the horizon than it actually is; at the horizon, the difference between ...
As sunlight passes through the atmosphere, its blue component is Rayleigh scattered strongly by atmospheric gases but the longer wavelength (e.g. red/yellow) components are not. The sunlight arriving directly from the Sun therefore appears to be slightly yellow, while the light scattered through rest of the sky appears blue.
The optical atmospheric window is the optical portion of the electromagnetic spectrum that passes through the Earth's atmosphere, excluding its infrared part; [10] although, as mentioned before, the optical spectrum also includes the IR spectrum and thus the optical window could include the infrared window (8 – 14 μm), the latter is ...