enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Surface tension - Wikipedia

    en.wikipedia.org/wiki/Surface_tension

    Surface tension is an important factor in the phenomenon of capillarity. Surface tension has the dimension of force per unit length, or of energy per unit area. [4] The two are equivalent, but when referring to energy per unit of area, it is common to use the term surface energy, which is a more general term in the sense that it applies also to ...

  3. Maximum bubble pressure method - Wikipedia

    en.wikipedia.org/wiki/Maximum_bubble_pressure_method

    (σ: surface tension, ΔP max: maximum pressure drop, R cap: radius of capillary) Later, after the maximum pressure, the pressure of the bubble decreases and the radius of the bubble increases until the bubble is detached from the end of a capillary and a new cycle begins. This is not relevant to determine the surface tension. [3]

  4. Capillary length - Wikipedia

    en.wikipedia.org/wiki/Capillary_length

    The surface of a fluid is curved because exposed molecules on the surface have fewer neighboring interactions, resulting in a net force that contracts the surface. There exists a pressure difference either side of this curvature, and when this balances out the pressure due to gravity, one can rearrange to find the capillary length. [2]

  5. Pressure - Wikipedia

    en.wikipedia.org/wiki/Pressure

    Surface pressure is denoted by π: = and shares many similar properties with three-dimensional pressure. Properties of surface chemicals can be investigated by measuring pressure/area isotherms, as the two-dimensional analog of Boyle's law, πA = k, at constant temperature. Surface tension is another example of surface pressure, but with a ...

  6. Dewetting - Wikipedia

    en.wikipedia.org/wiki/Dewetting

    The surface of the liquid has the shape of a spherical cap, due to Laplace pressure S = γ SG − γ SL − γ LG {\displaystyle S\ =\gamma _{\text{SG}}-\gamma _{\text{SL}}-\gamma _{\text{LG}}} where γ SG is the solid-gas surface tension , γ SL is the solid-liquid surface tension and γ LG is the liquid-gas surface tension (measured for the ...

  7. Young–Laplace equation - Wikipedia

    en.wikipedia.org/wiki/Young–Laplace_equation

    In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.

  8. Pore water pressure - Wikipedia

    en.wikipedia.org/wiki/Pore_water_pressure

    Realistically, the effective stress is greater than the total stress, as the pore water pressure in these partially saturated soils is actually negative. This is primarily due to the surface tension of pore water in voids throughout the vadose zone causing a suction effect on surrounding particles, i.e. matric suction.

  9. Laplace pressure - Wikipedia

    en.wikipedia.org/wiki/Laplace_pressure

    The Laplace pressure is the pressure difference between the inside and the outside of a curved surface that forms the boundary between two fluid regions. [1] The pressure difference is caused by the surface tension of the interface between liquid and gas, or between two immiscible liquids.