enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eight queens puzzle - Wikipedia

    en.wikipedia.org/wiki/Eight_queens_puzzle

    Nauck also extended the puzzle to the n queens problem, with n queens on a chessboard of n×n squares. Since then, many mathematicians, including Carl Friedrich Gauss, have worked on both the eight queens puzzle and its generalized n-queens version. In 1874, S. Günther proposed a method using determinants to find solutions. [1]

  3. Min-conflicts algorithm - Wikipedia

    en.wikipedia.org/wiki/Min-conflicts_algorithm

    Min-Conflicts solves the N-Queens Problem by selecting a column from the chess board for queen reassignment. The algorithm searches each potential move for the number of conflicts (number of attacking queens), shown in each square. The algorithm moves the queen to the square with the minimum number of conflicts, breaking ties randomly.

  4. Mathematical chess problem - Wikipedia

    en.wikipedia.org/wiki/Mathematical_chess_problem

    The most famous problem of this type is the eight queens puzzle. Problems are further extended by asking how many possible solutions exist. Further generalizations apply the problem to NxN boards. [3] [4] An 8×8 chessboard can have 16 independent kings, 8 independent queens, 8 independent rooks, 14 independent bishops, or 32 independent ...

  5. Exact cover - Wikipedia

    en.wikipedia.org/wiki/Exact_cover

    The N queens problem is the problem of placing n chess queens on an n×n chessboard so that no two queens threaten each other. A solution requires that no two queens share the same row, column, or diagonal. It is an example of a generalized exact cover problem. [5]

  6. N queens problem - Wikipedia

    en.wikipedia.org/?title=N_queens_problem&redirect=no

    This page was last edited on 10 December 2005, at 09:48 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.

  7. Dancing Links - Wikipedia

    en.wikipedia.org/wiki/Dancing_Links

    Some of the better-known exact cover problems include tiling, the n queens problem, and Sudoku. The name dancing links , which was suggested by Donald Knuth , stems from the way the algorithm works, as iterations of the algorithm cause the links to "dance" with partner links so as to resemble an "exquisitely choreographed dance."

  8. Queen's graph - Wikipedia

    en.wikipedia.org/wiki/Queen's_graph

    A dominating set of the queen's graph corresponds to a placement of queens such that every square on the chessboard is either attacked or occupied by a queen. On an 8 × 8 {\displaystyle 8\times 8} chessboard, five queens can dominate, and this is the minimum number possible [ 4 ] : 113–114 (four queens leave at least two squares unattacked).

  9. Binary constraint - Wikipedia

    en.wikipedia.org/wiki/Binary_constraint

    For example, consider the n-queens problem, where the goal is to place n chess queens on an n-by-n chessboard such that none of the queens can attack each other (horizontally, vertically, or diagonally). The formal set of constraints are therefore "Queen 1 can't attack Queen 2", "Queen 1 can't attack Queen 3", and so on between all pairs of queens.