Ad
related to: difference quotient at a point worksheetteacherspayteachers.com has been visited by 100K+ users in the past month
- Assessment
Creative ways to see what students
know & help them with new concepts.
- Packets
Perfect for independent work!
Browse our fun activity packs.
- Worksheets
All the printables you need for
math, ELA, science, and much more.
- Lessons
Powerpoints, pdfs, and more to
support your classroom instruction.
- Assessment
Search results
Results from the WOW.Com Content Network
Geometrically, this difference quotient measures the slope of the secant line passing through the points with coordinates (a, f(a)) and (b, f(b)). [ 10 ] Difference quotients are used as approximations in numerical differentiation , [ 8 ] but they have also been subject of criticism in this application.
The simplest method is to use finite difference approximations. A simple two-point estimation is to compute the slope of a nearby secant line through the points (x, f(x)) and (x + h, f(x + h)). [1] Choosing a small number h, h represents a small change in x, and it can be either positive or negative.
The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.
The process of finding the difference quotient is called differentiation. Given a function defined at several points of the real line, the difference quotient at that point is a way of encoding the small-scale (i.e., from the point to the next) behavior of the function.
A finite difference is a mathematical expression of the form f (x + b) − f (x + a).If a finite difference is divided by b − a, one gets a difference quotient.The approximation of derivatives by finite differences plays a central role in finite difference methods for the numerical solution of differential equations, especially boundary value problems.
The latter is the difference quotient for g at a, and because g is differentiable at a by assumption, its limit as x tends to a exists and equals g′(a). As for Q(g(x)), notice that Q is defined wherever f is. Furthermore, f is differentiable at g(a) by assumption, so Q is continuous at g(a), by definition of the derivative.
For differentiable functions, the symmetric difference quotient does provide a better numerical approximation of the derivative than the usual difference quotient. [3] The symmetric derivative at a given point equals the arithmetic mean of the left and right derivatives at that point, if the latter two both exist. [1] [2]: 6
For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).
Ad
related to: difference quotient at a point worksheetteacherspayteachers.com has been visited by 100K+ users in the past month