enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Confidence interval - Wikipedia

    en.wikipedia.org/wiki/Confidence_interval

    The colored lines are 50% confidence intervals for the mean, μ. At the center of each interval is the sample mean, marked with a diamond. The blue intervals contain the population mean, and the red ones do not. In statistics, a confidence interval (CI) is a tool for estimating a parameter, such as the mean of a population. [1]

  3. Multiple comparisons problem - Wikipedia

    en.wikipedia.org/wiki/Multiple_comparisons_problem

    The multiple comparisons problem also applies to confidence intervals. A single confidence interval with a 95% coverage probability level will contain the true value of the parameter in 95% of samples. However, if one considers 100 confidence intervals simultaneously, each with 95% coverage probability, the expected number of non-covering ...

  4. Binomial proportion confidence interval - Wikipedia

    en.wikipedia.org/wiki/Binomial_proportion...

    The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.

  5. Interval estimation - Wikipedia

    en.wikipedia.org/wiki/Interval_estimation

    A confidence interval states there is a 100γ% confidence that the parameter of interest is within a lower and upper bound. A common misconception of confidence intervals is 100γ% of the data set fits within or above/below the bounds, this is referred to as a tolerance interval, which is discussed below.

  6. Confidence distribution - Wikipedia

    en.wikipedia.org/wiki/Confidence_Distribution

    Classically, a confidence distribution is defined by inverting the upper limits of a series of lower-sided confidence intervals. [15] [16] [page needed] In particular, For every α in (0, 1), let (−∞, ξ n (α)] be a 100α% lower-side confidence interval for θ, where ξ n (α) = ξ n (X n,α) is continuous and increasing in α for each sample X n.

  7. Bonferroni correction - Wikipedia

    en.wikipedia.org/wiki/Bonferroni_correction

    The procedure proposed by Dunn [2] can be used to adjust confidence intervals. If one establishes m {\displaystyle m} confidence intervals, and wishes to have an overall confidence level of 1 − α {\displaystyle 1-\alpha } , each individual confidence interval can be adjusted to the level of 1 − α m {\displaystyle 1-{\frac {\alpha }{m}}} .

  8. Behrens–Fisher problem - Wikipedia

    en.wikipedia.org/wiki/Behrens–Fisher_problem

    In statistics, the Behrens–Fisher problem, named after Walter-Ulrich Behrens and Ronald Fisher, is the problem of interval estimation and hypothesis testing concerning the difference between the means of two normally distributed populations when the variances of the two populations are not assumed to be equal, based on two independent samples.

  9. Fieller's theorem - Wikipedia

    en.wikipedia.org/wiki/Fieller's_theorem

    a) The expression inside the square root has to be positive, or else the resulting interval will be imaginary. b) When g is very close to 1, the confidence interval is infinite. c) When g is greater than 1, the overall divisor outside the square brackets is negative and the confidence interval is exclusive.