enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Natural units - Wikipedia

    en.wikipedia.org/wiki/Natural_units

    In physics, natural unit systems are measurement systems for which selected physical constants have been set to 1 through nondimensionalization of physical units.For example, the speed of light c may be set to 1, and it may then be omitted, equating mass and energy directly E = m rather than using c as a conversion factor in the typical mass–energy equivalence equation E = mc 2.

  3. List of common physics notations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_physics...

    joule per kilogram per kelvin (J⋅kg1 ⋅K −1) viscous damping coefficient kilogram per second (kg/s) electric displacement field also called the electric flux density coulomb per square meter (C/m 2) density: kilogram per cubic meter (kg/m 3) diameter: meter (m) distance: meter (m) direction

  4. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    L 2 M T −1: scalar Angular acceleration: ω a: Change in angular velocity per unit time rad/s 2: T −2: Area: A: Extent of a surface m 2: L 2: extensive, bivector or scalar Area density: ρ A: Mass per unit area kgm −2: L −2 M: intensive Capacitance: C: Stored charge per unit electric potential farad (F = C/V) L −2 M1 T 4 I 2 ...

  5. List of physical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_constants

    The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured.

  6. 2019 revision of the SI - Wikipedia

    en.wikipedia.org/wiki/2019_revision_of_the_SI

    It is defined by taking the fixed numerical value of the Boltzmann constant k to be 1.380 649 × 10 −23 when expressed in the unit J⋅K −1, which is equal to kgm 2 ⋅s −2 ⋅K −1, where the kilogram, metre and second are defined in terms of h, c and Δν Cs. The kelvin may be expressed directly in terms of the defining constants as:

  7. Pound (force) - Wikipedia

    en.wikipedia.org/wiki/Pound_(force)

    The pound-force is the product of one avoirdupois pound (exactly 0.45359237 kg) and the standard acceleration due to gravity, approximately 32.174049 ft/s 2 (9.80665 m/s 2). [ 5 ] [ 6 ] [ 7 ] The standard values of acceleration of the standard gravitational field ( g n ) and the international avoirdupois pound (lb) result in a pound-force equal ...

  8. List of conversion factors - Wikipedia

    en.wikipedia.org/wiki/List_of_conversion_factors

    ≡ 13 595.1 kg/m 3 × 1 cm × g 0: ≈ 1.333 22 × 10 3 Pa [33] centimetre of water (4 °C) cmH 2 O ≈ 999.972 kg/m 3 × 1 cm × g 0: ≈ 98.0638 Pa [33] foot of mercury (conventional) ftHg ≡ 13 595.1 kg/m 3 × 1 ft × g 0: ≈ 4.063 666 × 10 4 Pa [33] foot of water (39.2 °F) ftH 2 O ≈ 999.972 kg/m 3 × 1 ft × g 0: ≈ 2.988 98 × 10 3 ...

  9. gc (engineering) - Wikipedia

    en.wikipedia.org/wiki/Gc_(engineering)

    In engineering and physics, g c is a unit conversion factor used to convert mass to force or vice versa. [1] It is defined as = In unit systems where force is a derived unit, like in SI units, g c is equal to 1.