Search results
Results from the WOW.Com Content Network
Both NAD + and NADH strongly absorb ultraviolet light because of the adenine. For example, peak absorption of NAD + is at a wavelength of 259 nanometers (nm), with an extinction coefficient of 16,900 M −1 cm −1. NADH also absorbs at higher wavelengths, with a second peak in UV absorption at 339 nm with an extinction coefficient of 6,220 M ...
Nicotinamide adenine dinucleotide phosphate, abbreviated NADP [1] [2] or, in older notation, TPN (triphosphopyridine nucleotide), is a cofactor used in anabolic reactions, such as the Calvin cycle and lipid and nucleic acid syntheses, which require NADPH as a reducing agent ('hydrogen source').
The mobile water-soluble electron carrier is cytochrome c 6 in cyanobacteria, having been replaced by plastocyanin in plants. [8] Cyanobacteria can also synthesize ATP by oxidative phosphorylation, in the manner of other bacteria. The electron transport chain is NADH dehydrogenase → plastoquinol → b 6 f → cyt c 6 → cyt aa 3 → O 2
NAD is commonly called by other names, including NAD+ or NADH. These are both forms of NAD — NAD+ is the positively charged form, which has lost an electron, and NADH is the neutral form which ...
The pyruvate is turned into 2 lactate molecules, which convert NADH back to NAD+. The process then repeats, starting with another glucose molecule. Lactic acid fermentation is a metabolic process by which glucose or other six-carbon sugars (also, disaccharides of six-carbon sugars, e.g. sucrose or lactose ) are converted into cellular energy ...
In the presence of oxygen, when acetyl-CoA is produced, the molecule then enters the citric acid cycle (Krebs cycle) inside the mitochondrial matrix, and is oxidized to CO 2 while at the same time reducing NAD to NADH. NADH can be used by the electron transport chain to create further ATP as part of oxidative phosphorylation. To fully oxidize ...
When sufficient oxygen is not present in the muscle cells for further oxidation of pyruvate and NADH produced in glycolysis, NAD+ is regenerated from NADH by reduction of pyruvate to lactate. [4] Lactate is converted to pyruvate by the enzyme lactate dehydrogenase. [3] The standard free energy change of the reaction is -25.1 kJ/mol. [6]
In enzymology, a fumarate reductase (NADH) (EC 1.3.1.6) is an enzyme that catalyzes the chemical reaction succinate + NAD + ⇌ {\displaystyle \rightleftharpoons } fumarate + NADH + H + Thus, the two substrates of this enzyme are succinate and NAD + , whereas its three products are fumarate , NADH , and H + .