Search results
Results from the WOW.Com Content Network
Model-based assumptions. These include the following three types: Distributional assumptions. Where a statistical model involves terms relating to random errors, assumptions may be made about the probability distribution of these errors. [5] In some cases, the distributional assumption relates to the observations themselves. Structural assumptions.
Modern proof theory treats proofs as inductively defined data structures, not requiring an assumption that axioms are "true" in any sense. This allows parallel mathematical theories as formal models of a given intuitive concept, based on alternate sets of axioms, for example Axiomatic set theory and Non-Euclidean geometry.
Statistical inference makes propositions about a population, using data drawn from the population with some form of sampling.Given a hypothesis about a population, for which we wish to draw inferences, statistical inference consists of (first) selecting a statistical model of the process that generates the data and (second) deducing propositions from the model.
Informally, a statistical model can be thought of as a statistical assumption (or set of statistical assumptions) with a certain property: that the assumption allows us to calculate the probability of any event. As an example, consider a pair of ordinary six-sided dice. We will study two different statistical assumptions about the dice.
The assumptions underlying a t-test in the simplest form above are that: X follows a normal distribution with mean μ and variance σ 2 /n. s 2 (n − 1)/σ 2 follows a χ 2 distribution with n − 1 degrees of freedom. This assumption is met when the observations used for estimating s 2 come from a normal distribution (and i.i.d. for each group).
The i.i.d. assumption is also used in the central limit theorem, which states that the probability distribution of the sum (or average) of i.i.d. variables with finite variance approaches a normal distribution. [4] The i.i.d. assumption frequently arises in the context of sequences of random variables. Then, "independent and identically ...
Solomonoff's Inductive inference is the theory of prediction based on observations; for example, predicting the next symbol based upon a given series of symbols. The only assumption is that the environment follows some unknown but computable probability distribution.
However, there are differences. For example, the randomization-based analysis results in a small but (strictly) negative correlation between the observations. [27] [28] In the randomization-based analysis, there is no assumption of a normal distribution and certainly no assumption of independence. On the contrary, the observations are dependent!