enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    In mathematics, the dot product or scalar product [note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry , the dot product of the Cartesian coordinates of two vectors is widely used.

  3. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    The dot product of two unit vectors behaves just oppositely: it is zero when the unit vectors are perpendicular and 1 if the unit vectors are parallel. Unit vectors enable two convenient identities: the dot product of two unit vectors yields the cosine (which may be positive or negative) of the angle between the two unit vectors.

  4. Vector notation - Wikipedia

    en.wikipedia.org/wiki/Vector_notation

    For a quaternion q = a + bi + cj + dk, Hamilton used two projections: S q = a, for the scalar part of q, and V q = bi + cj + dk, the vector part. Using the modern terms cross product (×) and dot product (.), the quaternion product of two vectors p and q can be written pq = –p.q + p×q.

  5. Tensor product - Wikipedia

    en.wikipedia.org/wiki/Tensor_product

    The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.

  6. Orthonormality - Wikipedia

    en.wikipedia.org/wiki/Orthonormality

    In the Cartesian plane, two vectors are said to be perpendicular if the angle between them is 90° (i.e. if they form a right angle). This definition can be formalized in Cartesian space by defining the dot product and specifying that two vectors in the plane are orthogonal if their dot product is zero.

  7. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  8. Euclidean plane - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane

    The dot product of two vectors A = [A 1, A 2] and B = [B 1, B 2] is defined as: [5] = + A vector can be pictured as an arrow. Its magnitude is its length, and its direction is the direction the arrow points.

  9. Inner product space - Wikipedia

    en.wikipedia.org/wiki/Inner_product_space

    Inner products allow formal definitions of intuitive geometric notions, such as lengths, angles, and orthogonality (zero inner product) of vectors. Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot product or scalar product of Cartesian coordinates. Inner product spaces of infinite dimension are ...