enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Interval (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Interval_(mathematics)

    The empty set and the set of all reals are both open and closed intervals, while the set of non-negative reals, is a closed interval that is right-open but not left-open. The open intervals are open sets of the real line in its standard topology, and form a base of the open sets. An interval is said to be left-closed if it has a minimum element ...

  3. Open set - Wikipedia

    en.wikipedia.org/wiki/Open_set

    The open sets of the usual Euclidean topology of the real line are the empty set, the open intervals and every union of open intervals. The interval I = ( 0 , 1 ) {\displaystyle I=(0,1)} is open in R {\displaystyle \mathbb {R} } by definition of the Euclidean topology.

  4. Nested interval topology - Wikipedia

    en.wikipedia.org/wiki/Nested_interval_topology

    The open interval (0,1) is the set of all real numbers between 0 and 1; but not including either 0 or 1. To give the set (0,1) a topology means to say which subsets of (0,1) are "open", and to do so in a way that the following axioms are met: [1] The union of open sets is an open set. The finite intersection of open sets is an open set.

  5. Homeomorphism - Wikipedia

    en.wikipedia.org/wiki/Homeomorphism

    A chart of a manifold is a homeomorphism between an open subset of the manifold and an open subset of a Euclidean space. The stereographic projection is a homeomorphism between the unit sphere in ⁠ R 3 {\displaystyle \mathbb {R} ^{3}} ⁠ with a single point removed and the set of all points in ⁠ R 2 {\displaystyle \mathbb {R} ^{2}} ⁠ (a ...

  6. Rolle's theorem - Wikipedia

    en.wikipedia.org/wiki/Rolle's_theorem

    This function is continuous on the closed interval [−r, r] and differentiable in the open interval (−r, r), but not differentiable at the endpoints −r and r. Since f (−r) = f (r), Rolle's theorem applies, and indeed, there is a point where the derivative of f is zero. The theorem applies even when the function cannot be differentiated ...

  7. Regular open set - Wikipedia

    en.wikipedia.org/wiki/Regular_open_set

    If has its usual Euclidean topology then the open set = (,) (,) is not a regular open set, since ⁡ (¯) = (,). Every open interval in is a regular open set and every non-degenerate closed interval (that is, a closed interval containing at least two distinct points) is a regular closed set.

  8. Base (topology) - Wikipedia

    en.wikipedia.org/wiki/Base_(topology)

    For the real line, the collection of all open intervals is a base for the topology. So is the collection of all open intervals with rational endpoints, or the collection of all open intervals with irrational endpoints, for example. Note that two different bases need not have any basic open set in common.

  9. Unit interval - Wikipedia

    en.wikipedia.org/wiki/Unit_interval

    The open interval (0,1) is a subset of the positive real numbers and inherits an orientation from them. The orientation is reversed when the interval is entered from 1, such as in the integral ∫ 1 x d t t {\displaystyle \int _{1}^{x}{\frac {dt}{t}}} used to define natural logarithm for x in the interval, thus yielding negative values for ...