Search results
Results from the WOW.Com Content Network
The glass–liquid transition, or glass transition, is the gradual and reversible transition in amorphous materials (or in amorphous regions within semicrystalline materials) from a hard and relatively brittle "glassy" state into a viscous or rubbery state as the temperature is increased. [2]
The Flory–Fox equation relates the number-average molecular weight, M n, to the glass transition temperature, T g, as shown below: =, where T g,∞ is the maximum glass transition temperature that can be achieved at a theoretical infinite molecular weight and K is an empirical parameter that is related to the free volume present in the polymer sample.
The product is commercially available as polymers of low average molecular weights, between 250 and 3000 daltons. In this form it is a white waxy solid that melts between 20 and 30 °C. The commercial product can be processed further into polymers with molecular weights of 40,000 and higher.
The physical origin of the non-Arrhenius behavior of fragile glass formers is an area of active investigation in glass physics. Advances over the last decade have linked this phenomenon with the presence of locally heterogeneous dynamics in fragile glass formers; i.e. the presence of distinct (if transient) slow and fast regions within the material.
Polymers are composed of long molecular chains which form irregular, entangled coils in the melt. Some polymers retain such a disordered structure upon freezing and readily convert into amorphous solids. In other polymers, the chains rearrange upon freezing and form partly ordered regions with a typical size of the order 1 micrometer. [3]
Poly(butyl acrylate) (PBA) is a family of organic polymers with the formula (CH 2 CHCO 2 CH 2 CH 2 CH 2 CH 3) n. It is a synthetic acrylate polymer derived from butyl acrylate monomer. The polymers are colorless. This homopolymer is far less important than copolymers derived from methyl acrylate and other monomers.
Studies undergone using polyglycolide-made sutures have shown that the material loses half of its strength after two weeks and 100% after four weeks. The polymer is completely resorbed by the organism in a time frame of four to six months. [2] Degradation is faster in vivo than in vitro, this phenomenon thought to be due to cellular enzymatic ...
Repeating unit of polyphthalamide. Polyphthalamide (aka.PPA, [1] High Performance Polyamide) is a subset of thermoplastic synthetic resins in the polyamide family defined as when 55% or more moles of the carboxylic acid portion of the repeating unit in the polymer chain is composed of a combination of terephthalic (TPA) and isophthalic (IPA) acids. [2]