Search results
Results from the WOW.Com Content Network
A virus with this "viral envelope" uses it—along with specific receptors—to enter a new host cell. Viruses vary in shape from the simple helical and icosahedral to more complex structures. Viruses range in size from 20 to 300 nanometres; it would take 33,000 to 500,000 of them, side by side, to stretch to 1 centimetre (0.4 in).
The capsid and entire virus structure can be mechanically (physically) probed through atomic force microscopy. [43] [44] In general, there are five main morphological virus types: Helical These viruses are composed of a single type of capsomere stacked around a central axis to form a helical structure, which may have a central cavity, or tube ...
Viruses are only able to replicate themselves by commandeering the reproductive apparatus of cells and making them reproduce the virus's genetic structure and particles instead. How viruses do this depends mainly on the type of nucleic acid DNA or RNA they contain, which is either one or the other but never both. Viruses cannot function or ...
Cell entry by enveloped viruses is more complicated. Enveloped viruses enter the cell by attaching to an attachment factor located on the surface of the host cell. They then enter by endocytosis or a direct membrane fusion event. The fusion event is when the virus membrane and the host cell membrane fuse together allowing a virus to enter.
Vaccination against enveloped viruses can function by neutralizing the glycoprotein activity with antibodies. [16] Eliminating the virus's ability to form an envelope—by removing or inactivating a structural protein—or to bud has been studied as a method for producing viruses incapable of replication. [17] [18] [19] [20]
The genetic material of a virus is stored within a viral protein structure called the capsid. The capsid is a "shield" that protects the viral nucleic acids from getting degraded by host enzymes or other types of pesticides or pestilences. It also functions to attach the virion to
Virus crystallisation is the re-arrangement of viral components into solid crystal particles. [1] The crystals are composed of thousands of inactive forms of a particular virus arranged in the shape of a prism. [2] The inactive nature of virus crystals provide advantages for immunologists to effectively analyze the structure and function behind ...
The binding is due to electrostatic interactions and is influenced by pH and the presence of ions. The virus then releases its genetic material (either single- or double-stranded RNA or DNA) into the cell. In some viruses this genetic material is circular and mimics a bacterial plasmid. At this stage the cell becomes infected and can also be ...