Search results
Results from the WOW.Com Content Network
Additive white Gaussian noise (AWGN) is a basic noise model used in information theory to mimic the effect of many random processes that occur in nature. The modifiers denote specific characteristics: Additive because it is added to any noise that might be intrinsic to the information system.
A special case is white Gaussian noise, in which the values at any pair of times are identically distributed and statistically independent (and hence uncorrelated). In communication channel testing and modelling, Gaussian noise is used as additive white noise to generate additive white Gaussian noise.
White noise is commonly used in the production of electronic music, usually either directly or as an input for a filter to create other types of noise signal. It is used extensively in audio synthesis , typically to recreate percussive instruments such as cymbals or snare drums which have high noise content in their frequency domain. [ 8 ]
Colored noise can be computer-generated by first generating a white noise signal, Fourier-transforming it, then multiplying the amplitudes of the different frequency components with a frequency-dependent function. [26] Matlab programs are available to generate power-law colored noise in one or any number of dimensions.
White noise. Additive white Gaussian noise; Black noise; Gaussian noise; Pink noise or flicker noise, with 1/f power spectrum; Brownian noise, with 1/f 2 power spectrum; Contaminated Gaussian noise, whose PDF is a linear mixture of Gaussian PDFs; Power-law noise; Cauchy noise; Multiplicative noise, multiplies or modulates the intended signal
The transformation is called "whitening" because it changes the input vector into a white noise vector. Several other transformations are closely related to whitening: the decorrelation transform removes only the correlations but leaves variances intact, the standardization transform sets variances to 1 but leaves correlations intact,
It concerns linear systems driven by additive white Gaussian noise. The problem is to determine an output feedback law that is optimal in the sense of minimizing the expected value of a quadratic cost criterion. Output measurements are assumed to be corrupted by Gaussian noise and the initial state, likewise, is assumed to be a Gaussian random ...
First, white noise is a generalized stochastic process with independent values at each time. [12] Hence it plays the role of a generalized system of independent coordinates, in the sense that in various contexts it has been fruitful to express more general processes occurring e.g. in engineering or mathematical finance, in terms of white noise.