Search results
Results from the WOW.Com Content Network
The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera). [13]
When the carbon equivalent is between 0.40 and 0.60 weld preheat may be necessary. When the carbon equivalent is above 0.60, preheat is necessary, postheat may be necessary. The following carbon equivalent formula is used to determine if a spot weld will fail in high-strength low-alloy steel due to excessive hardenability: [2]
The number of moles of ethanol is 0.2 kg / (0.04607 kg/mol) = 4.341 mol, so that the apparent molar volume is 0.2317 L / 4.341 mol = 0.0532 L / mol = 53.2 cc/mole (1.16 cc/g). However pure ethanol has a molar volume at this temperature of 58.4 cc/mole (1.27 cc/g). If the solution were ideal, its volume would be the sum of the unmixed components ...
Historically, the mole was defined as the amount of substance in 12 grams of the carbon-12 isotope.As a consequence, the mass of one mole of a chemical compound, in grams, is numerically equal (for all practical purposes) to the mass of one molecule or formula unit of the compound, in daltons, and the molar mass of an isotope in grams per mole is approximately equal to the mass number ...
In chemistry, the molar mass (M) (sometimes called molecular weight or formula weight, but see related quantities for usage) of a chemical compound is defined as the ratio between the mass and the amount of substance (measured in moles) of any sample of the compound. [1] The molar mass is a bulk, not molecular, property of a substance.
The yield coefficient is defined as the amount of cell mass (kg) or product formed (kg,mol) [Notes 1] related to the consumed substrate (carbon or nitrogen source or oxygen in kg or moles) or to the intracellular ATP production (moles)." [4] [5]: 168
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
1 Nm 3 of any gas (measured at 0 °C and 1 atmosphere of absolute pressure) equals 37.326 scf of that gas (measured at 60 °F and 1 atmosphere of absolute pressure). 1 kmol of any ideal gas equals 22.414 Nm 3 of that gas at 0 °C and 1 atmosphere of absolute pressure ... and 1 lbmol of any ideal gas equals 379.482 scf of that gas at 60 °F and ...