enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. EM algorithm and GMM model - Wikipedia

    en.wikipedia.org/wiki/EM_Algorithm_And_GMM_Model

    The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.

  3. Mixture model - Wikipedia

    en.wikipedia.org/wiki/Mixture_model

    A typical finite-dimensional mixture model is a hierarchical model consisting of the following components: . N random variables that are observed, each distributed according to a mixture of K components, with the components belonging to the same parametric family of distributions (e.g., all normal, all Zipfian, etc.) but with different parameters

  4. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectation–maximization...

    A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models (Technical Report TR-97-021). International Computer Science Institute. includes a simplified derivation of the EM equations for Gaussian Mixtures and Gaussian Mixture Hidden Markov Models.

  5. File:Parameter estimation process infinite Gaussian mixture ...

    en.wikipedia.org/wiki/File:Parameter_estimation...

    Histograms for one-dimensional datapoints belonging to clusters detected by an infinite Gaussian mixture model. During the parameter estimation based on Gibbs sampling , new clusters are created and grow on the data. The legend shows the cluster colours and the number of datapoints assigned to each cluster.

  6. Multifidelity simulation - Wikipedia

    en.wikipedia.org/wiki/Multifidelity_simulation

    A more general class of regression-based multi-fidelity methods are Bayesian approaches, e.g. Bayesian linear regression, [3] Gaussian mixture models, [10] [11] Gaussian processes, [12] auto-regressive Gaussian processes, [2] or Bayesian polynomial chaos expansions.

  7. Independent component analysis - Wikipedia

    en.wikipedia.org/wiki/Independent_component_analysis

    The ML "model" includes a specification of a pdf, which in this case is the pdf of the unknown source signals . Using ML ICA , the objective is to find an unmixing matrix that yields extracted signals y = W x {\displaystyle y=\mathbf {W} x} with a joint pdf as similar as possible to the joint pdf p s {\displaystyle p_{s}} of the unknown source ...

  8. Generative model - Wikipedia

    en.wikipedia.org/wiki/Generative_model

    Types of generative models are: Gaussian mixture model (and other types of mixture model) Hidden Markov model; Probabilistic context-free grammar; Bayesian network (e.g. Naive bayes, Autoregressive model) Averaged one-dependence estimators; Latent Dirichlet allocation; Boltzmann machine (e.g. Restricted Boltzmann machine, Deep belief network)

  9. Multivariate kernel density estimation - Wikipedia

    en.wikipedia.org/wiki/Multivariate_kernel...

    We consider estimating the density of the Gaussian mixture (4π) −1 exp(− 1 ⁄ 2 (x 1 2 + x 2 2)) + (4π) −1 exp(− 1 ⁄ 2 ((x 1 - 3.5) 2 + x 2 2)), from 500 randomly generated points. We employ the Matlab routine for 2-dimensional data. The routine is an automatic bandwidth selection method specifically designed for a second order ...