enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lift-to-drag ratio - Wikipedia

    en.wikipedia.org/wiki/Lift-to-drag_ratio

    Most importantly, the maximum lift-to-drag ratio is independent of the weight of the aircraft, the area of the wing, or the wing loading. It can be shown that two main drivers of maximum lift-to-drag ratio for a fixed wing aircraft are wingspan and total wetted area. One method for estimating the zero-lift drag coefficient of an aircraft is the ...

  3. Wing loading - Wikipedia

    en.wikipedia.org/wiki/Wing_loading

    Wing loading is a useful measure of the stalling speed of an aircraft. Wings generate lift owing to the motion of air around the wing. Larger wings move more air, so an aircraft with a large wing area relative to its mass (i.e., low wing loading) will have a lower stalling speed.

  4. Thickness-to-chord ratio - Wikipedia

    en.wikipedia.org/wiki/Thickness-to-chord_ratio

    The natural outcome of this requirement is a wing design that is thin and wide, which has a low thickness-to-chord ratio. At lower speeds, undesirable parasitic drag is largely a function of the total surface area, which suggests using a wing with minimum chord, leading to the high aspect ratios seen on light aircraft and regional airliners ...

  5. Wing-shape optimization - Wikipedia

    en.wikipedia.org/wiki/Wing-shape_optimization

    After modifying their goals to only keep the lift to drag ratio high and even out the pressure, the simulation provided a better design – showing that this tool is very adaptable to the situation at hand. The end result of this study was that Airbus had a set of airfoil designs that are suited to a very large wing-body aircraft.

  6. Load factor (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Load_factor_(aeronautics)

    In the definition of load factor, the lift is not simply that one generated by the aircraft's wing, instead it is the vector sum of the lift generated by the wing, the fuselage and the tailplane, [2]: 395 or in other words it is the component perpendicular to the airflow of the sum of all aerodynamic forces acting on the aircraft. The lift in ...

  7. JetZero: Groundbreaking ‘blended-wing’ demonstrator plane ...

    www.aol.com/jetzero-groundbreaking-blended-wing...

    Boeing and Airbus have explored designs for blended wing aircraft – now California-based JetZero aims to put one into service by 2030. ... the entire aircraft to generate lift, minimizing drag ...

  8. Boeing 747 - Wikipedia

    en.wikipedia.org/wiki/Boeing_747

    The Boeing 747 is a long-range wide-body airliner designed and manufactured by Boeing Commercial Airplanes in the United States between 1968 and 2023. After the introduction of the 707 in October 1958, Pan Am wanted a jet 2 + 1 ⁄ 2 times its size, to reduce its seat cost by 30%.

  9. Aspect ratio (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Aspect_ratio_(aeronautics)

    An ASH 31 glider with very high aspect ratio (AR=33.5) and lift-to-drag ratio (L/D=56) In aeronautics, the aspect ratio of a wing is the ratio of its span to its mean chord. It is equal to the square of the wingspan divided by the wing area. Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing has a low aspect ratio. [1]