Search results
Results from the WOW.Com Content Network
Theta waves generate the theta rhythm, a neural oscillation in the brain that underlies various aspects of cognition and behavior, including learning, memory, and spatial navigation in many animals. [ 1 ] [ 2 ] It can be recorded using various electrophysiological methods, such as electroencephalogram (EEG), recorded either from inside the ...
Neural oscillations, in particular theta activity, are extensively linked to memory function. Theta rhythms are very strong in rodent hippocampi and entorhinal cortex during learning and memory retrieval, and they are believed to be vital to the induction of long-term potentiation, a potential cellular mechanism for learning and memory.
Brainwave entrainment is a colloquialism for 'neural entrainment', [25] which is a term used to denote the way in which the aggregate frequency of oscillations produced by the synchronous electrical activity in ensembles of cortical neurons can adjust to synchronize with the periodic vibration of external stimuli, such as a sustained acoustic ...
The other field state is that of the theta rhythm. The theta state is characterised by a steady slow oscillation of around 6–7 Hz. LIA has a predominantly lower oscillation frequency but contains some sharp spikes, called sharp waves [1] of a higher frequency than that of theta. [2]
Dynamics of the theta model on the unit circle. Blue denotes a stable fixed point; Green denotes an unstable fixed point. By varying the input parameter, the two equilibria collide and form a stable limit cycle; Gray arrows indicate that the points are attracting in ; Black arrows indicate the direction of movement along the unit circle.
Based on this model initial memories of the events are formed during the acquisition and reinforced during replay. Acquisition occurs by theta and gamma waves activating a neuronal pathway for initial formation of the memory. Later this pathway would get replayed following the SPW-Rs propagation to neocortex.
Beta waves, or beta rhythm, are neural oscillations (brainwaves) in the brain with a frequency range of between 12.5 and 30 Hz (12.5 to 30 cycles per second). Several different rhythms coexist, with some being inhibitory and others excitory in function.
Tonic REM is characterized by theta rhythms in the brain; phasic REM is characterized by PGO waves and actual "rapid" eye movements. Processing of external stimuli is heavily inhibited during phasic REM, and recent evidence suggests that sleepers are more difficult to arouse from phasic REM than in slow-wave sleep. [18]