enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Causal inference - Wikipedia

    en.wikipedia.org/wiki/Causal_inference

    Causal inference is the process of determining the independent, actual effect of a particular phenomenon that is a component of a larger system. The main difference between causal inference and inference of association is that causal inference analyzes the response of an effect variable when a cause of the effect variable is changed.

  3. Rubin causal model - Wikipedia

    en.wikipedia.org/wiki/Rubin_causal_model

    Rubin defines a causal effect: Intuitively, the causal effect of one treatment, E, over another, C, for a particular unit and an interval of time from to is the difference between what would have happened at time if the unit had been exposed to E initiated at and what would have happened at if the unit had been exposed to C initiated at : 'If an hour ago I had taken two aspirins instead of ...

  4. Causal model - Wikipedia

    en.wikipedia.org/wiki/Causal_model

    Judea Pearl defines a causal model as an ordered triple ,, , where U is a set of exogenous variables whose values are determined by factors outside the model; V is a set of endogenous variables whose values are determined by factors within the model; and E is a set of structural equations that express the value of each endogenous variable as a function of the values of the other variables in U ...

  5. Causal graph - Wikipedia

    en.wikipedia.org/wiki/Causal_graph

    These models were initially confined to linear equations with fixed parameters. Modern developments have extended graphical models to non-parametric analysis, and thus achieved a generality and flexibility that has transformed causal analysis in computer science, epidemiology, [19] and social science. [20]

  6. Predictive modelling - Wikipedia

    en.wikipedia.org/wiki/Predictive_modelling

    For example, predictive models are often used to detect crimes and identify suspects, after the crime has taken place. [2] In many cases, the model is chosen on the basis of detection theory to try to guess the probability of an outcome given a set amount of input data, for example given an email determining how likely that it is spam.

  7. Causal reasoning - Wikipedia

    en.wikipedia.org/wiki/Causal_reasoning

    Causal reasoning is the process of identifying causality: the relationship between a cause and its effect.The study of causality extends from ancient philosophy to contemporary neuropsychology; assumptions about the nature of causality may be shown to be functions of a previous event preceding a later one.

  8. Causal analysis - Wikipedia

    en.wikipedia.org/wiki/Causal_analysis

    Causal analysis is the field of experimental design and statistics pertaining to establishing cause and effect. [1] Typically it involves establishing four elements: correlation, sequence in time (that is, causes must occur before their proposed effect), a plausible physical or information-theoretical mechanism for an observed effect to follow from a possible cause, and eliminating the ...

  9. Granger causality - Wikipedia

    en.wikipedia.org/wiki/Granger_causality

    The definition of Granger causality in these tests is general and does not involve any modelling assumptions, such as a linear autoregressive model. The non-parametric tests for Granger causality can be used as diagnostic tools to build better parametric models including higher order moments and/or non-linearity. [13]