enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Right circular cylinder - Wikipedia

    en.wikipedia.org/wiki/Right_circular_cylinder

    The equilateral cylinder is characterized by being a right circular cylinder in which the diameter of the base is equal to the value of the height (geratrix). [ 4 ] Then, assuming that the radius of the base of an equilateral cylinder is r {\displaystyle r\,} then the diameter of the base of this cylinder is 2 r {\displaystyle 2r\,} and its ...

  3. Napkin ring problem - Wikipedia

    en.wikipedia.org/wiki/Napkin_ring_problem

    The two effects exactly cancel each other out. In the extreme case of the smallest possible sphere, the cylinder vanishes (its radius becomes zero) and the height equals the diameter of the sphere. In this case the volume of the band is the volume of the whole sphere, which matches the formula given above.

  4. Cylinder - Wikipedia

    en.wikipedia.org/wiki/Cylinder

    [2] The height (or altitude) of a cylinder is the perpendicular distance between its bases. The cylinder obtained by rotating a line segment about a fixed line that it is parallel to is a cylinder of revolution. A cylinder of revolution is a right circular cylinder. The height of a cylinder of revolution is the length of the generating line ...

  5. List of centroids - Wikipedia

    en.wikipedia.org/wiki/List_of_centroids

    a = the radius of the base circle h = the height of the semi-ellipsoid from the base cicle's center to the edge Solid paraboloid of revolution around z-axis: a = the radius of the base circle h = the height of the paboloid from the base cicle's center to the edge

  6. List of formulas in elementary geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    The basic quantities describing a sphere (meaning a 2-sphere, a 2-dimensional surface inside 3-dimensional space) will be denoted by the following variables r {\displaystyle r} is the radius, C = 2 π r {\displaystyle C=2\pi r} is the circumference (the length of any one of its great circles ),

  7. Cavalieri's principle - Wikipedia

    en.wikipedia.org/wiki/Cavalieri's_principle

    A cone and a cylinder have radius r and height h. 2. The volume ratio is maintained when the height is scaled to h' = r √ π. 3. Decompose it into thin slices. 4. Using Cavalieri's principle, reshape each slice into a square of the same area. 5. The pyramid is replicated twice. 6. Combining them into a cube shows that the volume ratio is 1:3.

  8. Capsule (geometry) - Wikipedia

    en.wikipedia.org/wiki/Capsule_(geometry)

    The volume of a capsule is calculated by adding the volume of a ball of radius (that accounts for the two hemispheres) to the volume of the cylindrical part. Hence, if the cylinder has height h {\displaystyle h} ,

  9. On the Sphere and Cylinder - Wikipedia

    en.wikipedia.org/wiki/On_the_Sphere_and_Cylinder

    On the Sphere and Cylinder (Greek: Περὶ σφαίρας καὶ κυλίνδρου) is a treatise that was published by Archimedes in two volumes c. 225 BCE. [1] It most notably details how to find the surface area of a sphere and the volume of the contained ball and the analogous values for a cylinder , and was the first to do so.