Search results
Results from the WOW.Com Content Network
The English word fungus is directly adopted from the Latin fungus (mushroom), used in the writings of Horace and Pliny. [10] This in turn is derived from the Greek word sphongos (σφόγγος 'sponge'), which refers to the macroscopic structures and morphology of mushrooms and molds; [11] the root is also used in other languages, such as the German Schwamm ('sponge') and Schimmel ('mold').
An autotroph is an organism that can convert abiotic sources of energy into energy stored in organic compounds, which can be used by other organisms. Autotrophs produce complex organic compounds (such as carbohydrates , fats , and proteins ) using carbon from simple substances such as carbon dioxide, [ 1 ] generally using energy from light or ...
If the heterotroph uses chemical energy, it is a chemoheterotroph (e.g., humans and mushrooms). If it uses light for energy, then it is a photoheterotroph (e.g., green non-sulfur bacteria ). Heterotrophs represent one of the two mechanisms of nutrition ( trophic levels ), the other being autotrophs ( auto = self, troph = nutrition).
Organotrophs use organic compounds as electron/hydrogen donors. Lithotrophs use inorganic compounds as electron/hydrogen donors.. The electrons or hydrogen atoms from reducing equivalents (electron donors) are needed by both phototrophs and chemotrophs in reduction-oxidation reactions that transfer energy in the anabolic processes of ATP synthesis (in heterotrophs) or biosynthesis (in autotrophs).
In contrast, green plants, red algae, brown algae, and cyanobacteria are all autotrophs, which use photosynthesis to produce their own food from sunlight. Some fungi may be saprotrophic, meaning they will extracellularly secrete enzymes onto their food to be broken down into smaller, soluble molecules which can diffuse back into the fungus.
Decomposers, such as bacteria and fungi (mushrooms), feed on waste and dead matter, converting it into inorganic chemicals that can be recycled as mineral nutrients for plants to use again. Trophic levels can be represented by numbers, starting at level 1 with plants.
Position in the food web, or trophic level, is used in ecology to broadly classify organisms as autotrophs or heterotrophs. This is a non-binary classification; some organisms (such as carnivorous plants) occupy the role of mixotrophs, or autotrophs that additionally obtain organic matter from non-atmospheric sources.
[36] [37] Protozoa, like plants and animals, can be considered heterotrophs or autotrophs. [33] Autotrophs like Euglena are capable of producing their energy using photosynthesis, while heterotrophic protozoa consume food by either funneling it through a mouth-like gullet or engulfing it with pseudopods, a form of phagocytosis. [33]