enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Poisson's equation - Wikipedia

    en.wikipedia.org/wiki/Poisson's_equation

    Siméon Denis Poisson. Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics.For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate the corresponding electrostatic or gravitational (force) field.

  3. Multigrid method - Wikipedia

    en.wikipedia.org/wiki/Multigrid_method

    Originally described in Xu's Ph.D. thesis [9] and later published in Bramble-Pasciak-Xu, [10] the BPX-preconditioner is one of the two major multigrid approaches (the other is the classic multigrid algorithm such as V-cycle) for solving large-scale algebraic systems that arise from the discretization of models in science and engineering ...

  4. Discrete Poisson equation - Wikipedia

    en.wikipedia.org/wiki/Discrete_Poisson_equation

    In mathematics, the discrete Poisson equation is the finite difference analog of the Poisson equation. In it, the discrete Laplace operator takes the place of the Laplace operator . The discrete Poisson equation is frequently used in numerical analysis as a stand-in for the continuous Poisson equation, although it is also studied in its own ...

  5. Spectral method - Wikipedia

    en.wikipedia.org/wiki/Spectral_method

    Spectral methods can be used to solve differential equations (PDEs, ODEs, eigenvalue, etc) and optimization problems. ... This is the Poisson equation, ...

  6. Relaxation (iterative method) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(iterative_method)

    Relaxation methods are used to solve the linear equations resulting from a discretization of the differential equation, for example by finite differences. [ 2 ] [ 3 ] [ 4 ] Iterative relaxation of solutions is commonly dubbed smoothing because with certain equations, such as Laplace's equation , it resembles repeated application of a local ...

  7. Walk-on-spheres method - Wikipedia

    en.wikipedia.org/wiki/Walk-on-spheres_method

    The WoS method can be modified to solve more general problems. In particular, the method has been generalized to solve Dirichlet problems for equations of the form = + [6] (which include the Poisson and linearized Poisson−Boltzmann equations) or for any elliptic partial differential equation with constant coefficients.

  8. Poisson kernel - Wikipedia

    en.wikipedia.org/wiki/Poisson_kernel

    In mathematics, and specifically in potential theory, the Poisson kernel is an integral kernel, used for solving the two-dimensional Laplace equation, given Dirichlet boundary conditions on the unit disk. The kernel can be understood as the derivative of the Green's function for the Laplace equation. It is named for Siméon Poisson.

  9. Uniqueness theorem for Poisson's equation - Wikipedia

    en.wikipedia.org/wiki/Uniqueness_theorem_for...

    The uniqueness theorem for Poisson's equation states that, for a large class of boundary conditions, the equation may have many solutions, but the gradient of every solution is the same. In the case of electrostatics , this means that there is a unique electric field derived from a potential function satisfying Poisson's equation under the ...