Search results
Results from the WOW.Com Content Network
The only memoryless continuous probability distribution is the exponential distribution, shown in the following proof: [9] First, define S ( t ) = Pr ( X > t ) {\displaystyle S(t)=\Pr(X>t)} , also known as the distribution's survival function .
A stochastic process has the Markov property if the conditional probability distribution of future states of the process (conditional on both past and present values) depends only upon the present state; that is, given the present, the future does not depend on the past.
The geometric distribution is the only memoryless discrete probability distribution. [4] It is the discrete version of the same property found in the exponential distribution. [1]: 228 The property asserts that the number of previously failed trials does not affect the number of future trials needed for a success.
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
For an exponential survival distribution, the probability of failure is the same in every time interval, no matter the age of the individual or device. This fact leads to the "memoryless" property of the exponential survival distribution: the age of a subject has no effect on the probability of failure in the next time interval.
A visual depiction of a Poisson point process starting. In probability theory, statistics and related fields, a Poisson point process (also known as: Poisson random measure, Poisson random point field and Poisson point field) is a type of mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one ...
(This formula is sometimes called the Hartley function.) This is the maximum possible rate of information that can be transmitted with that alphabet. (The logarithm should be taken to a base appropriate for the unit of measurement in use.) The absolute rate is equal to the actual rate if the source is memoryless and has a uniform distribution.
The mathematical model consists of a transition probability that specifies an output distribution for each possible sequence of channel inputs. In information theory, it is common to start with memoryless channels in which the output probability distribution only depends on the current channel input. A channel model may either be digital or analog.