enow.com Web Search

  1. Ads

    related to: hypersurface geometry formula chart images download

Search results

  1. Results from the WOW.Com Content Network
  2. Hypersurface - Wikipedia

    en.wikipedia.org/wiki/Hypersurface

    In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension n − 1 , which is embedded in an ambient space of dimension n , generally a Euclidean space , an affine space or a projective space . [ 1 ]

  3. Fano variety - Wikipedia

    en.wikipedia.org/wiki/Fano_variety

    The adjunction formula implies that K D = (K X + D)| D = (−(n+1)H + deg(D)H)| D, where H is the class of a hyperplane. The hypersurface D is therefore Fano if and only if deg(D) < n+1. More generally, a smooth complete intersection of hypersurfaces in n-dimensional projective space is Fano if and only if the sum of their degrees is at most n.

  4. Quadric (algebraic geometry) - Wikipedia

    en.wikipedia.org/wiki/Quadric_(algebraic_geometry)

    In mathematics, a quadric or quadric hypersurface is the subspace of N-dimensional space defined by a polynomial equation of degree 2 over a field. Quadrics are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine space. An example is the quadric surface =

  5. Gauss map - Wikipedia

    en.wikipedia.org/wiki/Gauss_Map

    In differential geometry, the Gauss map of a surface is a function that maps each point in the surface to a unit vector that is orthogonal to the surface at that point. Namely, given a surface X in Euclidean space R 3 , the Gauss map is a map N : X → S 2 (where S 2 is the unit sphere ) such that for each p in X , the function value N ( p ) is ...

  6. Adjunction formula - Wikipedia

    en.wikipedia.org/wiki/Adjunction_formula

    In mathematics, especially in algebraic geometry and the theory of complex manifolds, the adjunction formula relates the canonical bundle of a variety and a hypersurface inside that variety. It is often used to deduce facts about varieties embedded in well-behaved spaces such as projective space or to prove theorems by induction.

  7. Quintic threefold - Wikipedia

    en.wikipedia.org/wiki/Quintic_threefold

    One of the easiest examples to check of a Calabi-Yau manifold is given by the Fermat quintic threefold, which is defined by the vanishing locus of the polynomial = + + + + Computing the partial derivatives of gives the four polynomials = = = = = Since the only points where they vanish is given by the coordinate axes in , the vanishing locus is empty since [::::] is not a point in .

  8. Hyperplane - Wikipedia

    en.wikipedia.org/wiki/Hyperplane

    In geometry, a hyperplane of an n-dimensional space V is a subspace of dimension n − 1, or equivalently, of codimension 1 in V.The space V may be a Euclidean space or more generally an affine space, or a vector space or a projective space, and the notion of hyperplane varies correspondingly since the definition of subspace differs in these settings; in all cases however, any hyperplane can ...

  9. Dual curve - Wikipedia

    en.wikipedia.org/wiki/Dual_curve

    Similarly, generalizing to higher dimensions, given a hypersurface, the tangent space at each point gives a family of hyperplanes, and thus defines a dual hypersurface in the dual space. For any closed subvariety X in a projective space, the set of all hyperplanes tangent to some point of X is a closed subvariety of the dual of the projective ...

  1. Ads

    related to: hypersurface geometry formula chart images download