Search results
Results from the WOW.Com Content Network
Arrow pushing or electron pushing is a technique used to describe the progression of organic chemistry reaction mechanisms. [1] It was first developed by Sir Robert Robinson.In using arrow pushing, "curved arrows" or "curly arrows" are drawn on the structural formulae of reactants in a chemical equation to show the reaction mechanism.
Contributing structures of the carbonate ion. In chemistry, resonance, also called mesomerism, is a way of describing bonding in certain molecules or polyatomic ions by the combination of several contributing structures (or forms, [1] also variously known as resonance structures or canonical structures) into a resonance hybrid (or hybrid structure) in valence bond theory.
Additionally, the resulting resonance structures can give the molecule properties that are not inherently evident from looking at one structure. Some of these properties include different reactivities, local diamagnetic shielding in aromatics, deshielding, and acid and base strengths. [9]
Expressing resonance when drawing Lewis structures may be done either by drawing each of the possible resonance forms and placing double-headed arrows between them or by using dashed lines to represent the partial bonds (although the latter is a good representation of the resonance hybrid which is not, formally speaking, a Lewis structure ...
With meta substituents a carbon atom bearing the negative charge is further away from the carboxylic acid group (structure 2b). This effect is depicted in scheme 3, where, in a para substituted arene 1a, one resonance structure 1b is a quinoid with positive charge on the X substituent, releasing electrons and thus destabilizing the Y ...
Clar's rule states that for a benzenoid polycyclic aromatic hydrocarbon (i.e. one with only hexagonal rings), the resonance structure with the largest number of disjoint aromatic π-sextets is the most important to characterize its chemical and physical properties. Such a resonance structure is called a Clar structure. In other words, a ...
Because of resonance stabilization, carboxylic acids have much lower pK a values (and are therefore stronger acids) than alcohols. For example, the pK a value of acetic acid is 4.8, while ethanol has a pK a of 16. Hence acetic acid is a much stronger acid than ethanol.
Another class of oxonium ions encountered in organic chemistry is the oxocarbenium ions, obtained by protonation or alkylation of a carbonyl group e.g. R−C= + −R′ which forms a resonance structure with the fully-fledged carbocation R− + −O−R′ and is therefore especially stable: