enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Music and mathematics - Wikipedia

    en.wikipedia.org/wiki/Music_and_mathematics

    Music theory analyzes the pitch, timing, and structure of music. It uses mathematics to study elements of music such as tempo, chord progression, form, and meter. The attempt to structure and communicate new ways of composing and hearing music has led to musical applications of set theory, abstract algebra and number theory.

  3. Topology - Wikipedia

    en.wikipedia.org/wiki/Topology

    A three-dimensional model of a figure-eight knot.The figure-eight knot is a prime knot and has an Alexander–Briggs notation of 4 1.. Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling ...

  4. Topos - Wikipedia

    en.wikipedia.org/wiki/Topos

    In mathematics, a topos (US: / ˈ t ɒ p ɒ s /, UK: / ˈ t oʊ p oʊ s, ˈ t oʊ p ɒ s /; plural topoi / ˈ t ɒ p ɔɪ / or / ˈ t oʊ p ɔɪ /, or toposes) is a category that behaves like the category of sheaves of sets on a topological space (or more generally: on a site).

  5. Topological space - Wikipedia

    en.wikipedia.org/wiki/Topological_space

    In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance.More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms ...

  6. Path (topology) - Wikipedia

    en.wikipedia.org/wiki/Path_(topology)

    In mathematics, a path in a topological space is a continuous function from a closed interval into . Paths play an important role in the fields of topology and mathematical analysis. For example, a topological space for which there exists a path connecting any two points is said to be path-connected.

  7. Mathematical structure - Wikipedia

    en.wikipedia.org/wiki/Mathematical_structure

    A topology: there is a notion of open sets. There are interfaces among these: Its order and, independently, its metric structure induce its topology. Its order and algebraic structure make it into an ordered field. Its algebraic structure and topology make it into a Lie group, a type of topological group.

  8. Neighbourhood (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Neighbourhood_(mathematics)

    In topology and related areas of mathematics, a neighbourhood (or neighborhood) is one of the basic concepts in a topological space. It is closely related to the concepts of open set and interior . Intuitively speaking, a neighbourhood of a point is a set of points containing that point where one can move some amount in any direction away from ...

  9. Retraction (topology) - Wikipedia

    en.wikipedia.org/wiki/Retraction_(topology)

    In topology, a branch of mathematics, a retraction is a continuous mapping from a topological space into a subspace that preserves the position of all points in that subspace. [1] The subspace is then called a retract of the original space. A deformation retraction is a mapping that captures the idea of continuously shrinking a space into a ...