Search results
Results from the WOW.Com Content Network
It has octahedral rotation symmetry : three axes pass through the cube's opposite faces centroid, six through the cube's opposite edges midpoints, and four through the cube's opposite vertices; each of these axes is respectively four-fold rotational symmetry (0°, 90°, 180°, and 270°), two-fold rotational symmetry (0° and 180°), and three ...
In geometry, an edge is a particular type of line segment joining two vertices in a polygon, polyhedron, or higher-dimensional polytope. [1] In a polygon, an edge is a line segment on the boundary, [2] and is often called a polygon side. In a polyhedron or more generally a polytope, an edge is a line segment where two faces (or polyhedron sides ...
In graph theory, the hypercube graph Q n is the graph formed from the vertices and edges of an n-dimensional hypercube. For instance, the cube graph Q 3 is the graph formed by the 8 vertices and 12 edges of a three-dimensional cube. Q n has 2 n vertices, 2 n – 1 n edges, and is a regular graph with n edges touching each vertex.
Etymologically, "cuboid" means "like a cube", in the sense of a convex solid which can be transformed into a cube (by adjusting the lengths of its edges and the angles between its adjacent faces). A cuboid is a convex polyhedron whose polyhedral graph is the same as that of a cube. [1] [2] General cuboids have many different types.
For instance, a cube has eight vertices, twelve edges, and six facets, so its ƒ-vector is (8,12,6). The dual polytope has a ƒ-vector with the same numbers in the reverse order; thus, for instance, the regular octahedron, the dual to a cube, has the ƒ-vector (6,12,8).
where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of faces is 2 more than the excess of the number of edges over the number of vertices. For example, a cube has 12 edges and 8 vertices, and hence 6 faces.
The facets are generalized (n−1)-cube and the vertex figure are regular simplexes. The regular polygon perimeter seen in these orthogonal projections is called a Petrie polygon. The generalized squares (n = 2) are shown with edges outlined as red and blue alternating color p-edges, while the higher n-cubes are drawn with black outlined p-edges.
The two edges along the cycle adjacent to any of the vertices are not written down. Let v be the vertices of the graph and describe the Hamiltonian circle along the p vertices by the edge sequence v 0 v 1, v 1 v 2, ...,v p−2 v p−1, v p−1 v 0. Halting at a vertex v i, there is one unique vertex v j at a distance d i joined by a chord with v i,