enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cuboid - Wikipedia

    en.wikipedia.org/wiki/Cuboid

    In geometry, a cuboid is a hexahedron with quadrilateral faces, meaning it is a polyhedron with six faces; it has eight vertices and twelve edges. A rectangular cuboid (sometimes also called a "cuboid") has all right angles and equal opposite rectangular faces. Etymologically, "cuboid" means "like a cube", in the sense of a convex solid which ...

  3. Cube - Wikipedia

    en.wikipedia.org/wiki/Cube

    Like other cuboids, every face of a cube has four vertices, each of which connects with three congruent lines. These edges form square faces, making the dihedral angle of a cube between every two adjacent squares being the interior angle of a square, 90°. Hence, the cube has six faces, twelve edges, and eight vertices.

  4. List of uniform polyhedra by vertex figure - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra...

    The relations can be made apparent by examining the vertex figures obtained by listing the faces adjacent to each vertex (remember that for uniform polyhedra all vertices are the same, that is vertex-transitive). For example, the cube has vertex figure 4.4.4, which is to say, three adjacent square faces. The possible faces are 3 - equilateral ...

  5. Face (geometry) - Wikipedia

    en.wikipedia.org/wiki/Face_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of faces is 2 more than the excess of the number of edges over the number of vertices. For example, a cube has 12 edges and 8 vertices, and hence 6 faces.

  6. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry. Uniform polyhedra can be divided between convex forms with convex regular polygon faces and star forms. Star forms have either regular star polygon faces or vertex figures or both. This list includes these:

  7. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    The elements of an abstract polyhedron are its body (the maximal element), its faces, edges, vertices and the null polytope or empty set. These abstract elements can be mapped into ordinary space or realised as geometrical figures. Some abstract polyhedra have well-formed or faithful realisations, others do not.

  8. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    Vertex, edge and face of a cube. The Euler characteristic χ was classically defined for the surfaces of polyhedra, according to the formula = + where V, E, and F are respectively the numbers of vertices (corners), edges and faces in the given polyhedron.

  9. Rectangular cuboid - Wikipedia

    en.wikipedia.org/wiki/Rectangular_cuboid

    A rectangular cuboid with integer edges, as well as integer face diagonals, is called an Euler brick; for example with sides 44, 117, and 240. A perfect cuboid is an Euler brick whose space diagonal is also an integer. It is currently unknown whether a perfect cuboid actually exists. [6] The number of different nets for a simple cube is 11 ...