Search results
Results from the WOW.Com Content Network
Lifting line theory supposes wings that are long and thin with negligible fuselage, akin to a thin bar (the eponymous "lifting line") of span 2s driven through the fluid. . From the Kutta–Joukowski theorem, the lift L(y) on a 2-dimensional segment of the wing at distance y from the fuselage is proportional to the circulation Γ(y) about the bar a
A raised aileron reduces lift on that wing and a lowered one increases lift, so moving the aileron control in this way causes the left wing to drop and the right wing to rise. This causes the aircraft to roll to the left and begin to turn to the left. Centering the control returns the ailerons to the neutral position, maintaining the bank angle ...
In two-dimensional flow around a uniform wing of infinite span, the slope of the lift curve is determined primarily by the trailing edge angle. The slope is greatest if the angle is zero; and decreases as the angle increases. [6] [7] For a wing of finite span, the aspect ratio of the wing also significantly influences the slope of the curve. As ...
In February 1976, work commenced to automate the methods contained in the USAF Stability and Control DATCOM, specifically those contained in sections 4, 5, 6 and 7.The work was performed by the McDonnell Douglas Corporation under contract with the United States Air Force in conjunction with engineers at the Air Force Flight Dynamics Laboratory in Wright-Patterson Air Force Base.
Aircraft flight mechanics are relevant to fixed wing (gliders, aeroplanes) and rotary wing (helicopters) aircraft.An aeroplane (airplane in US usage), is defined in ICAO Document 9110 as, "a power-driven heavier than air aircraft, deriving its lift chiefly from aerodynamic reactions on surface which remain fixed under given conditions of flight".
Yawing also increases the speed of the outboard wing whilst slowing down the inboard wing, with corresponding changes in drag causing a (small) opposing yaw moment. N r {\displaystyle N_{r}} opposes the inherent directional stiffness which tends to point the aircraft's nose back into the wind and always matches the sign of the yaw rate input.
The wing is designed so that the angle of incidence is greater at the wing roots and decreases across the span, becoming lowest at the wing tip. This is usually to ensure that at stall speed the wing root stalls before the wing tips , providing the aircraft with continued aileron control and some resistance to spinning .
The natural outcome of this requirement is a wing design that is thin and wide, which has a low thickness-to-chord ratio. At lower speeds, undesirable parasitic drag is largely a function of the total surface area, which suggests using a wing with minimum chord, leading to the high aspect ratios seen on light aircraft and regional airliners ...