enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    The Reynolds number is the ratio of inertial forces to viscous forces within a fluid that is subjected to relative internal movement due to different fluid velocities. A region where these forces change behavior is known as a boundary layer, such as the bounding surface in the interior of a pipe.

  3. Oseen equations - Wikipedia

    en.wikipedia.org/wiki/Oseen_equations

    A vessel of diameter of 10 µm with a flow of 1 millimetre/second, viscosity of 0.02 poise for blood, density of 1 g/cm 3 and a heart rate of 2 Hz, will have a Reynolds number of 0.005 and a Womersley number of 0.0126. At these small Reynolds and Womersley numbers, the viscous effects of the fluid become predominant.

  4. Dynamic similarity (Reynolds and Womersley numbers)

    en.wikipedia.org/wiki/Dynamic_similarity...

    The Reynolds and Womersley Numbers are also used to calculate the thicknesses of the boundary layers that can form from the fluid flow’s viscous effects. The Reynolds number is used to calculate the convective inertial boundary layer thickness that can form, and the Womersley number is used to calculate the transient inertial boundary thickness that can form.

  5. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  6. Prandtl–Batchelor theorem - Wikipedia

    en.wikipedia.org/wiki/Prandtl–Batchelor_theorem

    In fluid dynamics, Prandtl–Batchelor theorem states that if in a two-dimensional laminar flow at high Reynolds number closed streamlines occur, then the vorticity in the closed streamline region must be a constant. A similar statement holds true for axisymmetric flows. The theorem is named after Ludwig Prandtl and George Batchelor.

  7. Inviscid flow - Wikipedia

    en.wikipedia.org/wiki/Inviscid_flow

    The Reynolds number (Re) is a dimensionless quantity that is commonly used in fluid dynamics and engineering. [6] [7] Originally described by George Gabriel Stokes in 1850, it became popularized by Osborne Reynolds after whom the concept was named by Arnold Sommerfeld in 1908. [7] [8] [9] The Reynolds number is calculated as:

  8. Direct numerical simulation - Wikipedia

    en.wikipedia.org/wiki/Direct_numerical_simulation

    and consequently, the number of time steps grows also as a power law of the Reynolds number. One can estimate that the number of floating-point operations required to complete the simulation is proportional to the number of mesh points and the number of time steps, and in conclusion, the number of operations grows as R e 3 {\displaystyle ...

  9. Dimensionless physical constant - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_physical...

    In aerodynamics for example, if one considers one particular airfoil, the Reynolds number value of the laminar–turbulent transition is one relevant dimensionless number of the problem. However, it is strictly related to the particular problem: for example, it is related to the airfoil being considered and also to the type of fluid in which it ...