Search results
Results from the WOW.Com Content Network
The motion is periodic, repeating itself in a sinusoidal fashion with constant amplitude A. In addition to its amplitude, the motion of a simple harmonic oscillator is characterized by its period T = 2 π / ω {\displaystyle T=2\pi /\omega } , the time for a single oscillation or its frequency f = 1 / T {\displaystyle f=1/T} , the number of ...
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Coupled pendulums can affect each other's motion, either through a direction connection (such as a spring connecting the bobs) or through motions in a supporting structure (such as a tabletop). The equations of motion for two identical simple pendulums coupled by a spring connecting the bobs can be obtained using Lagrangian mechanics.
A mass m attached to a spring of spring constant k exhibits simple harmonic motion in closed space. The equation for describing the period: = shows the period of oscillation is independent of the amplitude, though in practice the amplitude should be small. The above equation is also valid in the case when an additional constant force is being ...
The equations of motion describe the movement of the center of mass of a body, which remains at a constant distance from the axis of rotation. In circular motion, the distance between the body and a fixed point on its surface remains the same, i.e., the body is assumed rigid.
The period depends on the length of the pendulum and also to a slight degree on the amplitude, the width of the pendulum's swing. The regular motion of pendulums was used for timekeeping and was the world's most accurate timekeeping technology until the 1930s. [2]
Introducing a coordinate system centred in the position of the cusp, the equation of motion is given by: = [() + ()] = [ ()], where is the angle that the straight part of the string makes with the vertical axis, and is given by = (), = =, where A < 1 is the "amplitude", is the radian frequency of the pendulum and g the ...
Periodic motion is motion in which the position(s) of the system are expressible as periodic functions, all with the same period. For a function on the real numbers or on the integers , that means that the entire graph can be formed from copies of one particular portion, repeated at regular intervals.