enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Master theorem (analysis of algorithms) - Wikipedia

    en.wikipedia.org/wiki/Master_theorem_(analysis...

    Sections 4.3 (The master method) and 4.4 (Proof of the master theorem), pp. 73–90. Michael T. Goodrich and Roberto Tamassia. Algorithm Design: Foundation, Analysis, and Internet Examples. Wiley, 2002. ISBN 0-471-38365-1. The master theorem (including the version of Case 2 included here, which is stronger than the one from CLRS) is on pp. 268 ...

  3. Analysis of algorithms - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_algorithms

    4 for i = 1 to n 5 for j = 1 to i 6 print i * j 7 print "Done!" A given computer will take a discrete amount of time to execute each of the instructions involved with carrying out this algorithm. Say that the actions carried out in step 1 are considered to consume time at most T 1 , step 2 uses time at most T 2 , and so forth.

  4. Master theorem - Wikipedia

    en.wikipedia.org/wiki/Master_theorem

    In mathematics, a theorem that covers a variety of cases is sometimes called a master theorem. Some theorems called master theorems in their fields include: Master theorem (analysis of algorithms), analyzing the asymptotic behavior of divide-and-conquer algorithms; Ramanujan's master theorem, providing an analytic expression for the Mellin ...

  5. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Mason–Stothers theorem (polynomials) Master theorem (analysis of algorithms) (recurrence relations, asymptotic analysis) Maschke's theorem (group representations) Matiyasevich's theorem (mathematical logic) Max flow min cut theorem (graph theory) Max Noether's theorem (algebraic geometry) Maximal ergodic theorem (ergodic theory)

  6. Akra–Bazzi method - Wikipedia

    en.wikipedia.org/wiki/Akra–Bazzi_method

    In computer science, the Akra–Bazzi method, or Akra–Bazzi theorem, is used to analyze the asymptotic behavior of the mathematical recurrences that appear in the analysis of divide and conquer algorithms where the sub-problems have substantially different sizes.

  7. Quicksort - Wikipedia

    en.wikipedia.org/wiki/Quicksort

    The master theorem for divide-and-conquer recurrences tells us that T(n) = O(n log n). The outline of a formal proof of the O(n log n) expected time complexity follows. Assume that there are no duplicates as duplicates could be handled with linear time pre- and post-processing, or considered cases easier than the analyzed.

  8. View and manage data associated with your account - AOL Help

    help.aol.com/articles/view-and-manage-data...

    6. Click Request Download . Important - If you did not request a download but were notified about a download request, please follow these steps to secure your account .

  9. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    For this recurrence relation, the master theorem for divide-and-conquer recurrences gives the asymptotic bound () = (⁡). It follows that, for sufficiently large n , Karatsuba's algorithm will perform fewer shifts and single-digit additions than longhand multiplication, even though its basic step uses more additions and shifts than the ...