Search results
Results from the WOW.Com Content Network
The master theorem always yields asymptotically tight bounds to recurrences from divide and conquer algorithms that partition an input into smaller subproblems of equal sizes, solve the subproblems recursively, and then combine the subproblem solutions to give a solution to the original problem. The time for such an algorithm can be expressed ...
It is a generalization of the master theorem for divide-and-conquer recurrences, which assumes that the sub-problems have equal size. It is named after mathematicians Mohamad Akra and Louay Bazzi. It is named after mathematicians Mohamad Akra and Louay Bazzi.
For looking up a given entry in a given ordered list, both the binary and the linear search algorithm (which ignores ordering) can be used. The analysis of the former and the latter algorithm shows that it takes at most log 2 n and n check steps, respectively, for a list of size n.
In mathematics, a theorem that covers a variety of cases is sometimes called a master theorem. Some theorems called master theorems in their fields include: Master theorem (analysis of algorithms), analyzing the asymptotic behavior of divide-and-conquer algorithms; Ramanujan's master theorem, providing an analytic expression for the Mellin ...
Figure 1. Finding the shortest path in a graph using optimal substructure; a straight line indicates a single edge; a wavy line indicates a shortest path between the two vertices it connects (among other paths, not shown, sharing the same two vertices); the bold line is the overall shortest path from start to goal.
Mason–Stothers theorem (polynomials) Master theorem (analysis of algorithms) (recurrence relations, asymptotic analysis) Maschke's theorem (group representations) Matiyasevich's theorem (mathematical logic) Max flow min cut theorem (graph theory) Max Noether's theorem (algebraic geometry) Maximal ergodic theorem (ergodic theory)
For this recurrence relation, the master theorem for divide-and-conquer recurrences gives the asymptotic bound () = (). It follows that, for sufficiently large n , Karatsuba's algorithm will perform fewer shifts and single-digit additions than longhand multiplication, even though its basic step uses more additions and shifts than the ...
Eight years later, he returned with T E X, which is currently used for all volumes. Another characteristic of the volumes is the variation in the difficulty of the exercises including a numerical rating varying from 0 to 50, where 0 is trivial, and 50 is an open question in contemporary research.