Search results
Results from the WOW.Com Content Network
The rate of deformation is a function of the material's properties, exposure time, exposure temperature and the applied structural load. Depending on the magnitude of the applied stress and its duration, the deformation may become so large that a component can no longer perform its function – for example creep of a turbine blade could cause ...
This is a combination of a large temperature gradient due to low thermal conductivity, in addition to rapid change in temperature on brittle materials. The change in temperature causes stresses on the surface that are in tension, which encourages crack formation and propagation. Ceramics materials are usually susceptible to thermal shock. [2]
The alignment of magnetic moments in the composite material affects the Curie temperature. If the material's moments are parallel with each other, the Curie temperature will increase and if perpendicular the Curie temperature will decrease [44] as either more or less thermal energy will be needed to destroy the alignments.
The principle of time-temperature superposition requires the assumption of thermorheologically simple behavior (all curves have the same characteristic time variation law with temperature). From an initial spectral window [ ω 1 , ω 2 ] and a series of isotherms in this window, we can calculate the master curves of a material which extends ...
Thermal shock resistance measures can be used for material selection in applications subject to rapid temperature changes. The maximum temperature jump, , sustainable by a material can be defined for strength-controlled models by: [4] [3] = where is the failure stress (which can be yield or fracture stress), is the coefficient of thermal expansion, is the Young's modulus, and is a constant ...
Nevertheless, a thermodynamic temperature does in fact have a definite numerical value that has been arbitrarily chosen by tradition and is dependent on the property of particular materials; it is simply less arbitrary than relative "degrees" scales such as Celsius and Fahrenheit. Being an absolute scale with one fixed point (zero), there is ...
Vacancies occur naturally in all crystalline materials. At any given temperature, up to the melting point of the material, there is an equilibrium concentration (ratio of vacant lattice sites to those containing atoms). [2] At the melting point of some metals the ratio can be approximately 1:1000. [3] This temperature dependence can be modelled by
Polymers represent another large area in which thermal analysis finds strong applications. Thermoplastic polymers are commonly found in everyday packaging and household items, but for the analysis of the raw materials, effects of the many additive used (including stabilisers and colours) and fine-tuning of the moulding or extrusion processing used can be achieved by using differential scanning ...