Search results
Results from the WOW.Com Content Network
The important point of this is that the zero-point field energy H F does not affect the Heisenberg equation for a kλ since it is a c-number or constant (i.e. an ordinary number rather than an operator) and commutes with a kλ. We can therefore drop the zero-point field energy from the Hamiltonian, as is usually done.
The Casimir force (per unit area) between parallel plates vanishes as alpha, the fine structure constant, goes to zero, and the standard result, which appears to be independent of alpha, corresponds to the alpha approaching infinity limit", and that "The Casimir force is simply the (relativistic, retarded) van der Waals force between the metal ...
[18]: 14–15 The torque can vanish even when the force is non-zero, if the body is located at the reference point (=) or if the force and the displacement vector are directed along the same line. The angular momentum of a collection of point masses, and thus of an extended body, is found by adding the contributions from each of the points.
It is useful to notice that the resultant force used in Newton's laws can be separated into forces that are applied to the particle and forces imposed by constraints on the movement of the particle. Remarkably, the work of a constraint force is zero, therefore only the work of the applied forces need be considered in the work–energy principle.
If the force acting on a body varies over space, then one has a force field; such a field is described by vectors at every point in space, which is in-turn called a vector field. A conservative vector field can be simply expressed as the gradient of a certain scalar function, called a scalar potential. The potential energy is related to, and ...
In physics, a conservative force is a force with the property that the total work done by the force in moving a particle between two points is independent of the path taken. [1] Equivalently, if a particle travels in a closed loop, the total work done (the sum of the force acting along the path multiplied by the displacement ) by a conservative ...
If clockwise bending moments are taken as negative, then a negative bending moment within an element will cause "hogging", and a positive moment will cause "sagging". It is therefore clear that a point of zero bending moment within a beam is a point of contraflexure—that is, the point of transition from hogging to sagging or vice versa.
When a force acts on a particle, it is applied to a single point (the particle volume is negligible): this is a point force and the particle is its application point. But an external force on an extended body (object) can be applied to a number of its constituent particles, i.e. can be "spread" over some volume or surface of the body.