Search results
Results from the WOW.Com Content Network
Nuclear reactor physics is the field of physics that studies and deals with the ... term in the evolution equation, and more moderation reduces the ...
The following apply for the nuclear reaction: a + b ↔ R → c in the centre of mass frame , where a and b are the initial species about to collide, c is the final species, and R is the resonant state .
Without delayed neutrons, changes in reaction rates in nuclear reactors would occur at speeds that are too fast for humans to control. The region of supercriticality between k = 1 and k = 1/(1 − β) is known as delayed supercriticality (or delayed criticality). It is in this region that all nuclear power reactors operate.
Reactions with neutrons are important in nuclear reactors and nuclear weapons. While the best-known neutron reactions are neutron scattering , neutron capture , and nuclear fission , for some light nuclei (especially odd-odd nuclei ) the most probable reaction with a thermal neutron is a transfer reaction:
The multiplication factor, k, is defined as (see nuclear chain reaction): k = number of neutrons in one generation / number of neutrons in preceding generation . If k is greater than 1, the chain reaction is supercritical, and the neutron population will grow exponentially.
Nuclear scientists and engineers often need to know where neutrons are in an apparatus, in what direction they are going, and how quickly they are moving. It is commonly used to determine the behavior of nuclear reactor cores and experimental or industrial neutron beams. Neutron transport is a type of radiative transport.
The Inhour equation used in nuclear reactor kinetics to relate reactivity and the reactor period. [1] Inhour is short for "inverse hour" and is defined as the reactivity which will make the stable reactor period equal to 1 hour (3,600 seconds). [2] Reactivity is more commonly expressed as per cent millie (pcm) of Δk/k or dollars. [3]
The four-factor formula, also known as Fermi's four factor formula is used in nuclear engineering to determine the multiplication of a nuclear chain reaction in an infinite medium. Four-factor formula: k ∞ = η f p ε {\displaystyle k_{\infty }=\eta fp\varepsilon } [ 1 ]