enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that, for any real number x, one has = ⁡ + ⁡, where e is the base of the natural logarithm, i is the ...

  3. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    The exponential function extends to an entire function on the complex plane. Euler's formula relates its values at purely imaginary arguments to trigonometric functions. The exponential function also has analogues for which the argument is a matrix, or even an element of a Banach algebra or a Lie algebra.

  4. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely and and then integrated. This technique is often simpler and faster than using trigonometric identities or integration by parts , and is sufficiently powerful to integrate any rational expression involving trigonometric functions.

  5. Contributions of Leonhard Euler to mathematics - Wikipedia

    en.wikipedia.org/wiki/Contributions_of_Leonhard...

    A geometric interpretation of Euler's formula. Euler made important contributions to complex analysis.He introduced scientific notation. He discovered what is now known as Euler's formula, that for any real number, the complex exponential function satisfies

  6. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    Euler's formula relates the complex exponential function of an imaginary argument, which can be thought of as describing uniform circular motion in the complex plane, to the cosine and sine functions, geometrically its projections onto the real and imaginary axes, respectively.

  7. e (mathematical constant) - Wikipedia

    en.wikipedia.org/wiki/E_(mathematical_constant)

    The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .

  8. List of representations of e - Wikipedia

    en.wikipedia.org/wiki/List_of_representations_of_e

    This last non-simple continued fraction (sequence A110185 in the OEIS), equivalent to = [;,,,,,...], has a quicker convergence rate compared to Euler's continued fraction formula [clarification needed] and is a special case of a general formula for the exponential function:

  9. Complex analysis - Wikipedia

    en.wikipedia.org/wiki/Complex_analysis

    An exponential function A n of a discrete variable n, similar to geometric progression. A complex function is a function from complex numbers to complex numbers. In other words, it is a function that has a (not necessarily proper) subset of the complex numbers as a domain and the complex numbers as a codomain.