enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Symmetric polynomial - Wikipedia

    en.wikipedia.org/wiki/Symmetric_polynomial

    The following polynomials in two variables X 1 and X 2 are symmetric: + + + + (+) as is the following polynomial in three variables X 1, X 2, X 3: . There are many ways to make specific symmetric polynomials in any number of variables (see the various types below).

  3. Complete homogeneous symmetric polynomial - Wikipedia

    en.wikipedia.org/wiki/Complete_homogeneous...

    The complete homogeneous symmetric polynomials are characterized by the following identity of formal power series in t: = (, …,) = = = = = (this is called the generating function, or generating series, for the complete homogeneous symmetric polynomials).

  4. Elementary symmetric polynomial - Wikipedia

    en.wikipedia.org/.../Elementary_symmetric_polynomial

    That is, any symmetric polynomial P is given by an expression involving only additions and multiplication of constants and elementary symmetric polynomials. There is one elementary symmetric polynomial of degree d in n variables for each positive integer d ≤ n, and it is formed by adding together all distinct products of d distinct variables.

  5. Symmetry in mathematics - Wikipedia

    en.wikipedia.org/wiki/Symmetry_in_mathematics

    Symmetric polynomials arise naturally in the study of the relation between the roots of a polynomial in one variable and its coefficients, since the coefficients can be given by polynomial expressions in the roots, and all roots play a similar role in this setting. From this point of view, the elementary symmetric polynomials are the most ...

  6. Ring of symmetric functions - Wikipedia

    en.wikipedia.org/wiki/Ring_of_symmetric_functions

    (here Λ n denotes the ring of symmetric polynomials in n indeterminates), and also in (Stanley, 1999). To define a symmetric function one must either indicate directly a power series as in the first construction, or give a symmetric polynomial in n indeterminates for every natural number n in a way compatible with the second construction. An ...

  7. Symmetric function - Wikipedia

    en.wikipedia.org/wiki/Symmetric_function

    Aside from polynomial functions, tensors that act as functions of several vectors can be symmetric, and in fact the space of symmetric -tensors on a vector space is isomorphic to the space of homogeneous polynomials of degree on . Symmetric functions should not be confused with even and odd functions, which have a different sort of symmetry.

  8. Power sum symmetric polynomial - Wikipedia

    en.wikipedia.org/wiki/Power_sum_symmetric_polynomial

    The ring of symmetric polynomials with rational coefficients equals the rational polynomial ring [, …,]. The same is true if the coefficients are taken in any field of characteristic 0. However, this is not true if the coefficients must be integers. For example, for n = 2, the symmetric polynomial

  9. Ring theory - Wikipedia

    en.wikipedia.org/wiki/Ring_theory

    The main example is the ring of symmetric polynomials: symmetric polynomials are polynomials that are invariant under permutation of variable. The fundamental theorem of symmetric polynomials states that this ring is R [ σ 1 , … , σ n ] {\displaystyle R[\sigma _{1},\ldots ,\sigma _{n}]} where σ i {\displaystyle \sigma _{i}} are elementary ...