Search results
Results from the WOW.Com Content Network
Two such solutions, for the two values of s satisfying the equation, can be combined to make the general real solutions, with oscillatory and decaying properties in several regimes: Phase portrait of damped oscillator, with increasing damping strength. It starts at undamped, proceeds to underdamped, then critically damped, then overdamped. Undamped
Similar to the Fourier transform, Prony's method extracts valuable information from a uniformly sampled signal and builds a series of damped complex exponentials or damped sinusoids. This allows the estimation of frequency, amplitude, phase and damping components of a signal.
A generic electromagnetic field with frequency ω can be written as a sum of solutions to these two equations. The three-dimensional solutions of the Helmholtz Equation can be expressed as expansions in spherical harmonics with coefficients proportional to the spherical Bessel functions.
A simple harmonic oscillator is an oscillator that is neither driven nor damped.It consists of a mass m, which experiences a single force F, which pulls the mass in the direction of the point x = 0 and depends only on the position x of the mass and a constant k.
The Duffing equation (or Duffing oscillator), named after Georg Duffing (1861–1944), is a non-linear second-order differential equation used to model certain damped and driven oscillators. The equation is given by ¨ + ˙ + + = (), where the (unknown) function = is the displacement at time t, ˙ is the first derivative of with respect to ...
Near the origin = =, the system is unstable, and far from the origin, the system is damped. The Van der Pol oscillator does not have an exact, analytic solution. [13] However, such a solution does exist for the limit cycle if f(x) in the Lienard equation is a constant piece-wise function.
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...
The Rabi problem concerns the response of an atom to an applied harmonic electric field, with an applied frequency very close to the atom's natural frequency. It provides a simple and generally solvable example of light–atom interactions and is named after Isidor Isaac Rabi.