Search results
Results from the WOW.Com Content Network
List comprehension is a syntactic construct available in some programming languages for creating a list based on existing lists. It follows the form of the mathematical set-builder notation (set comprehension) as distinct from the use of map and filter functions.
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.
Python sets are very much like mathematical sets, and support operations like set intersection and union. Python also features a frozenset class for immutable sets, see Collection types. Dictionaries (class dict) are mutable mappings tying keys and corresponding values. Python has special syntax to create dictionaries ({key: value})
Like raw strings, there can be any number of equals signs between the square brackets, provided both the opening and closing tags have a matching number of equals signs; this allows nesting as long as nested block comments/raw strings use a different number of equals signs than their enclosing comment: --[[comment --[=[ nested comment ...
Python uses an English-based syntax. Haskell replaces the set-builder's braces with square brackets and uses symbols, including the standard set-builder vertical bar. The same can be achieved in Scala using Sequence Comprehensions, where the "for" keyword returns a list of the yielded variables using the "yield" keyword. [6]
Python's is operator may be used to compare object identities (comparison by reference), and comparisons may be chained—for example, a <= b <= c. Python uses and, or, and not as Boolean operators. Python has a type of expression named a list comprehension, and a more general expression named a generator expression. [77]
The following list contains syntax examples of how a range of element of an array can be accessed. In the following table: first – the index of the first element in the slice; last – the index of the last element in the slice; end – one more than the index of last element in the slice; len – the length of the slice (= end - first)
The example above, of list comprehension in the sin() function, is a useful feature in of itself. By using implicit parallelism, languages effectively have to provide such useful constructs to users simply to support required functionality (a language without a decent for loop , for example, is one few programmers will use).