Search results
Results from the WOW.Com Content Network
Nanoparticle drug delivery systems are engineered technologies that use nanoparticles for the targeted delivery and controlled release of therapeutic agents. The modern form of a drug delivery system should minimize side-effects and reduce both dosage and dosage frequency. Recently, nanoparticles have aroused attention due to their potential ...
Some of the properties that gold nanoparticles possess, such as small size, non-toxicity and non-immunogenicity make these molecules useful candidates for targeted drug delivery systems. With tumor-targeting delivery vectors becoming smaller, the ability to by-pass the natural barriers and obstacles of the body becomes more probable. To ...
In this drug delivery system, after the drug reaches the target site and tumor cell uptake is complete, an external magnetic field is applied causing a magnetothermal effect, raising the tumor cells' temperature and further promoting drug uptake. This nanocarrier system aims to improve drug stability, control drug release, and improve tumor ...
Solid lipid nanoparticles can function as the basis for oral and parenteral drug delivery systems. SLNs combine the advantages of lipid emulsion and polymeric nanoparticle systems while overcoming the temporal and in vivo stability issues that troubles the conventional as well as polymeric nanoparticles drug delivery approaches. [10]
The conventional drug delivery system is the absorption of the drug across a biological membrane, whereas the targeted release system releases the drug in a dosage form. The advantages to the targeted release system is the reduction in the frequency of the dosages taken by the patient, having a more uniform effect of the drug, reduction of drug ...
Drug delivery is a rapidly growing area that is now taking advantage of nanotube technology. Systems being used currently for drug delivery include dendrimers, polymers, and liposomes, but carbon nanotubes present the opportunity to work with effective structures that have high drug loading capacities and good cell penetration qualities.
Nanocarriers are useful in the drug delivery process because they can deliver drugs to site-specific targets, allowing drugs to be delivered in certain organs or cells but not in others. Site-specificity is a major therapeutic benefit as it prevents drugs from being delivered to the wrong places.
Drug delivery systems have been around for many years, but there are a few recent applications of drug delivery that warrant 1. Drug delivery to the brain: Many drugs can be harmful when administered systemically; the brain is very sensitive to medications and can easily cause damage if a drug is administered directly into the bloodstream.