Search results
Results from the WOW.Com Content Network
In a right triangle, the altitude from each acute angle coincides with a leg and intersects the opposite side at (has its foot at) the right-angled vertex, which is the orthocenter. For acute triangles, the feet of the altitudes all fall on the triangle's sides (not extended).
In geometry, a cevian is a line segment which joins a vertex of a triangle to a point on the opposite side of the triangle. [ 1 ] [ 2 ] Medians and angle bisectors are special cases of cevians. The name "cevian" comes from the Italian mathematician Giovanni Ceva , who proved a well-known theorem about cevians which also bears his name.
Azimuth is measured eastward from the north point (sometimes from the south point) of the horizon; altitude is the angle above the horizon. The horizontal coordinate system is a celestial coordinate system that uses the observer's local horizon as the fundamental plane to define two angles of a spherical coordinate system: altitude and azimuth.
The three altitudes of a triangle intersect at the orthocenter, which for an acute triangle is inside the triangle. The orthocenter of a triangle, usually denoted by H, is the point where the three (possibly extended) altitudes intersect. [1] [2] The orthocenter lies inside the triangle if and only if the triangle is acute.
The sum of the measures of the angles of any triangle is less than 180° if the geometry is hyperbolic, equal to 180° if the geometry is Euclidean, and greater than 180° if the geometry is elliptic. The defect of a triangle is the numerical value (180° − sum of the measures of the angles of the triangle). This result may also be stated as ...
The angle is placed anywhere on its circumference (figure 1). The intersections of the two sides with the circumference define a diameter (figure 2). Repeating this with a different set of intersections yields another diameter (figure 3). The centre is at the intersection of the diameters.
In a triangle, any arbitrary side can be considered the base. The two endpoints of the base are called base vertices and the corresponding angles are called base angles. The third vertex opposite the base is called the apex. The extended base of a triangle (a particular case of an extended side) is the line that contains the base.
Casing stone from the Great Pyramid. The seked of a pyramid is described by Richard Gillings in his book 'Mathematics in the Time of the Pharaohs' as follows: . The seked of a right pyramid is the inclination of any one of the four triangular faces to the horizontal plane of its base, and is measured as so many horizontal units per one vertical unit rise.