Ad
related to: introduction to smooth manifolds pdf
Search results
Results from the WOW.Com Content Network
Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Vol. 218 (Second ed.). New York London: Springer-Verlag. ISBN 978-1-4419-9981-8. OCLC 808682771. Introduction to Smooth Manifolds, Springer-Verlag, Graduate Texts in Mathematics, 2002, 2nd edition 2012 [6] Fredholm Operators and Einstein Metrics on Conformally Compact Manifolds.
In this case, (,) is called a Kähler structure, and a Kähler manifold is a manifold endowed with a Kähler structure. In particular, a Kähler manifold is both a complex and a symplectic manifold. A large class of Kähler manifolds (the class of Hodge manifolds) is given by all the smooth complex projective varieties.
Lee, John M., Introduction to Smooth Manifolds, Springer-Verlag, New York (2003) ISBN 0-387-95495-3.Graduate-level textbook on smooth manifolds. Hwa-Chung, Lee, "The Universal Integral Invariants of Hamiltonian Systems and Application to the Theory of Canonical Transformations", Proceedings of the Royal Society of Edinburgh.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric (an inner product on the tangent space at each point that varies smoothly from point to point). This gives, in particular, local notions of angle, length of curves, surface area and volume.
In mathematics, differential topology is the field dealing with the topological properties and smooth properties [a] of smooth manifolds.In this sense differential topology is distinct from the closely related field of differential geometry, which concerns the geometric properties of smooth manifolds, including notions of size, distance, and rigid shape.
Michele Audin, Torus actions on symplectic manifolds, Birkhauser, 2004 John Lee, Introduction to smooth manifolds , chapter 9, ISBN 978-1-4419-9981-8 Frank Warner, Foundations of differentiable manifolds and Lie groups , chapter 3, ISBN 978-0-387-90894-6
Introduction to smooth manifolds. New York: Springer. ISBN 0-387-95448-1. A textbook on manifold theory. See also the same author's textbooks on topological manifolds (a lower level of structure) and Riemannian geometry (a higher level of structure).
Ad
related to: introduction to smooth manifolds pdf