Search results
Results from the WOW.Com Content Network
FaceNet is a facial recognition system developed by Florian Schroff, Dmitry Kalenichenko and James Philbina, a group of researchers affiliated with Google.The system was first presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition. [1]
The Facial Recognition Technology (FERET) database is a dataset used for facial recognition system evaluation as part of the Face Recognition Technology (FERET) program.It was first established in 1993 under a collaborative effort between Harry Wechsler at George Mason University and Jonathon Phillips at the Army Research Laboratory in Adelphi, Maryland.
Face detection is gaining the interest of marketers. A webcam can be integrated into a television and detect any face that walks by. The system then calculates the race, gender, and age range of the face. Once the information is collected, a series of advertisements can be played that is specific toward the detected race/gender/age.
Although the accuracy of facial recognition systems as a biometric technology is lower than iris recognition, fingerprint image acquisition, palm recognition or voice recognition, it is widely adopted due to its contactless process. [3] Facial recognition systems have been deployed in advanced human–computer interaction, video surveillance ...
FACE Challenges – recognition of individuals from photographs posted on social media. [9] Face in Video Evaluation (FIVE) – ability of algorithms to identify or ignore persons from video sources, many times in which the person is not actively cooperating for the purposes of facial recognition, i.e. "in the wild". [10]
DeepFace is a deep learning facial recognition system created by a research group at Facebook.It identifies human faces in digital images. The program employs a nine-layer neural network with over 120 million connection weights and was trained on four million images uploaded by Facebook users.
On average only 0.01% of all sub-windows are positive (faces) Equal computation time is spent on all sub-windows; Must spend most time only on potentially positive sub-windows. A simple 2-feature classifier can achieve almost 100% detection rate with 50% FP rate. That classifier can act as a 1st layer of a series to filter out most negative windows
The origin of facial recognition technology is largely attributed to Woodrow Wilson Bledsoe and his work in the 1960s, when he developed a system to identify faces from a database of thousands of photographs. [6] The FERET program first began as a way to unify a large body of face-recognition technology research under a standard database.