Search results
Results from the WOW.Com Content Network
A sieve analysis (or gradation test) is a practice or procedure used in geology, civil engineering, [1] and chemical engineering [2] to assess the particle size distribution (also called gradation) of a granular material by allowing the material to pass through a series of sieves of progressively smaller mesh size and weighing the amount of material that is stopped by each sieve as a fraction ...
Sieve estimators have been used extensively for estimating density functions in high-dimensional spaces such as in Positron emission tomography (PET). The first exploitation of Sieves in PET for solving the maximum-likelihood image reconstruction problem was by Donald Snyder and Michael Miller, [1] where they stabilized the time-of-flight PET problem originally solved by Shepp and Vardi. [2]
Unlike sieve analyses which can be time-consuming and inaccurate, taking a photo of a sample of the materials to be measured and using software to analyze the photo can result in rapid, accurate measurements. Another advantage is that the material can be analyzed without being handled.
Sieve method, or the method of sieves, can mean: in mathematics and computer science, the sieve of Eratosthenes, a simple method for finding prime numbers in number theory, any of a variety of methods studied in sieve theory; in combinatorics, the set of methods dealt with in sieve theory or more specifically, the inclusion–exclusion principle
The Fineness Modulus (FM) is an empirical figure obtained by adding the total percentage of the sample of an aggregate retained on each of a specified series of sieves, dividing the sum by 100. Sieves sizes are: 150-μm (No. 100), 300-μm (No. 50), 600-μm (No. 30), 1.18-mm (No. 16), 2.36-mm (No. 8), 4.75-mm (No. 4), 9.5-mm (3/8-in.), 19.0-mm ...
For example, a sample from a truckload of peanuts may be placed atop a mesh with 5 mm openings. When the mesh is shaken, small broken pieces and dust pass through the mesh while whole peanuts are retained on the mesh. A commercial peanut buyer might use a test like this to determine if a batch of peanuts has too many broken pieces.
For premium support please call: 800-290-4726 more ways to reach us
50 g of air dried coal featuring a grain size in the range between 0.6 and 1.18 mm are filled into the sample mill and a weight is put on the mill's grinding stone. After 60 rounds the grinded coal is put on a sampling sieve. Factor D equals the fraction of the coal passing through the sieve of 74 μm corresponding to 200 mesh.