enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uncertainty quantification - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_quantification

    There are two major types of problems in uncertainty quantification: one is the forward propagation of uncertainty (where the various sources of uncertainty are propagated through the model to predict the overall uncertainty in the system response) and the other is the inverse assessment of model uncertainty and parameter uncertainty (where the ...

  3. Measurement uncertainty - Wikipedia

    en.wikipedia.org/wiki/Measurement_uncertainty

    In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a quantity measured on an interval or ratio scale.. All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation.

  4. Uncertainty analysis - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_analysis

    In physical experiments uncertainty analysis, or experimental uncertainty assessment, deals with assessing the uncertainty in a measurement.An experiment designed to determine an effect, demonstrate a law, or estimate the numerical value of a physical variable will be affected by errors due to instrumentation, methodology, presence of confounding effects and so on.

  5. Experimental uncertainty analysis - Wikipedia

    en.wikipedia.org/wiki/Experimental_uncertainty...

    Random variations are not predictable but they do tend to follow some rules, and those rules are usually summarized by a mathematical construct called a probability density function (PDF). This function, in turn, has a few parameters that are very useful in describing the variation of the observed measurements.

  6. Probability bounds analysis - Wikipedia

    en.wikipedia.org/wiki/Probability_bounds_analysis

    Probability bounds analysis gives the same answer as interval analysis does when only range information is available. It also gives the same answers as Monte Carlo simulation does when information is abundant enough to precisely specify input distributions and their dependencies. Thus, it is a generalization of both interval analysis and ...

  7. Sensitivity analysis - Wikipedia

    en.wikipedia.org/wiki/Sensitivity_analysis

    Quantify the uncertainty in each input (e.g. ranges, probability distributions). Note that this can be difficult and many methods exist to elicit uncertainty distributions from subjective data. [14] Identify the model output to be analysed (the target of interest should ideally have a direct relation to the problem tackled by the model).

  8. 'Uncertainty, problems & change - a compelling Manchester derby'

    www.aol.com/uncertainty-problems-change...

    Selling a home-grown player like Marcus Rashford would be good under Profit and Sustainability rules. Offloading an underperforming high earner like Antony might help Amorim to improve his squad.

  9. Propagation of uncertainty - Wikipedia

    en.wikipedia.org/wiki/Propagation_of_uncertainty

    Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables ⁡ (+) = ⁡ + ⁡ + ⁡ (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...